We consider nonparametric Bayesian inference in a multidimensional diffusion model with reflecting boundary conditions based on discrete high-frequency observations. We prove a general posterior contraction rate theorem in $L^2$-loss, which is applied to Gaussian priors. The resulting posteriors, as well as their posterior means, are shown to converge to the ground truth at the minimax optimal rate over H\"older smoothness classes in any dimension. Of independent interest and as part of our proofs, we show that certain frequentist penalized least squares estimators are also minimax optimal.
翻译:我们认为,在基于离散高频观测的反映边界条件的多维扩散模型中,非对称的贝叶斯推论是非参数性的。我们证明,对高西亚前科适用的一般后端收缩率理论值为2美元损失。由此产生的后端推论及其后方推论显示,在任何层面都比“H”年老的光滑等级最低最佳比率接近地面真理。独立的兴趣和作为我们证据的一部分,我们证明,某些经常受处罚的最小方位估测者也是最理想的。