The Work Disability Functional Assessment Battery (WD-FAB) is a multidimensional item response theory (IRT) instrument designed for assessing work-related mental and physical function based on responses to an item bank. In prior iterations it was developed using traditional means -- linear factorization and null hypothesis statistical testing for item partitioning/selection, and finally, posthoc calibration of disjoint unidimensional IRT models. As a result, the WD-FAB, like many other IRT instruments, is a posthoc model. Its item partitioning, based on exploratory factor analysis, is blind to the final nonlinear IRT model and is not performed in a manner consistent with goodness of fit to the final model. In this manuscript, we develop a Bayesian hierarchical model for self-consistently performing the following simultaneous tasks: scale factorization, item selection, parameter identification, and response scoring. This method uses sparsity-based shrinkage to obviate the linear factorization and null hypothesis statistical tests that are usually required for developing multidimensional IRT models, so that item partitioning is consistent with the ultimate nonlinear factor model. We also analogize our multidimensional IRT model to probabilistic autoencoders, specifying an encoder function that amortizes the inference of ability parameters from item responses. The encoder function is equivalent to the "VBE" step in a stochastic variational Bayesian expectation maximization (VBEM) procedure that we use for approxiamte Bayesian inference on the entire model. We use the method on a sample of WD-FAB item responses and compare the resulting item discriminations to those obtained using the traditional posthoc method.
翻译:工作残疾功能评估电池(WD- FAB) 是一个多层面的物品反应理论( IRT) 工具, 用于根据对项目库的响应来评估与工作有关的心理和身体功能。 在先前的迭代中, 它使用传统手段 -- -- 线性因数化和无效假设统计测试, 用于物项分割/ 选择, 以及最后, 单维的 IRT 模型的后热校准。 因此, WD- FAB 和许多其他 IRT 工具一样, 是一个后热模型。 其基于探索要素分析的物品分割, 与最终的非线性 IRT 模型的心理和身体功能相盲, 且不以符合最终模型的物理功能进行。 在这个手稿中, 我们开发了一种贝氏等级的等级模型, 用来同时执行以下任务: 比例化、 项目选择、 参数识别和响应评分。 这种方法使用基于神经缩略图的缩略图来避免线性因数化和无效的假设统计测试测试, 通常是用来开发多维变量模型, 因此, 项目的平衡与最终的非线性项模型的IRT 样样 样 样 样 样的比 测试 功能 功能, 将最终非线性变变变变变变变法 用于一个亚的功能 。 我们还变法 度 。