Survival analysis concerns the study of timeline data where the event of interest may remain unobserved (i.e., censored). Studies commonly record more than one type of event, but conventional survival techniques focus on a single event type. We set out to integrate both multiple independently censored time-to-event variables as well as missing observations. An energy-based approach is taken with a bi-partite structure between latent and visible states, known as harmoniums (or restricted Boltzmann machines). The present harmonium is shown, both theoretically and experimentally, to capture non-linearly separable patterns between distinct time recordings. We illustrate on real world data that, for a single time-to-event variable, our model is on par with established methods. In addition, we demonstrate that discriminative predictions improve by leveraging an extra time-to-event variable. In conclusion, multiple time-to-event variables can be successfully captured within the harmonium paradigm.


翻译:生存分析涉及对时间期限数据的研究,其中感兴趣的事件可能仍然得不到观察(即受审查的)。研究通常记录不止一种事件,但常规生存技术侧重于单一事件类型。我们着手将多个独立审查的时间到活动变量和缺失的观测结合起来。在潜在状态和可见状态(称为合声器(或受限制的波尔茨曼机器))之间的双面结构中,采用了基于能源的方法。目前的合声器在理论上和实验上都显示,可以捕捉不同时间记录之间的非线性分离模式。我们用真实世界数据来说明,对于单一的时间到事件变量来说,我们的模式与既定方法完全相同。此外,我们还表明,通过利用额外的时间到活动变量来改进了基于歧视的预测。最后,多种时间到活动变量可以在合音模式中成功捕捉到。</s>

0
下载
关闭预览

相关内容

剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
专知会员服务
60+阅读 · 2020年3月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
153+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
19+阅读 · 2021年6月15日
Feature Denoising for Improving Adversarial Robustness
Arxiv
15+阅读 · 2018年12月9日
Arxiv
151+阅读 · 2017年8月1日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员