Our goal is to enable robots to perform functional tasks in emotive ways, be it in response to their users' emotional states, or expressive of their confidence levels. Prior work has proposed learning independent cost functions from user feedback for each target emotion, so that the robot may optimize it alongside task and environment specific objectives for any situation it encounters. However, this approach is inefficient when modeling multiple emotions and unable to generalize to new ones. In this work, we leverage the fact that emotions are not independent of each other: they are related through a latent space of Valence-Arousal-Dominance (VAD). Our key idea is to learn a model for how trajectories map onto VAD with user labels. Considering the distance between a trajectory's mapping and a target VAD allows this single model to represent cost functions for all emotions. As a result 1) all user feedback can contribute to learning about every emotion; 2) the robot can generate trajectories for any emotion in the space instead of only a few predefined ones; and 3) the robot can respond emotively to user-generated natural language by mapping it to a target VAD. We introduce a method that interactively learns to map trajectories to this latent space and test it in simulation and in a user study. In experiments, we use a simple vacuum robot as well as the Cassie biped.
翻译:我们的目标是让机器人能够以情感方式执行功能性任务,无论是针对其用户的情绪状态,还是表达其信任度。 先前的工作提议从每个目标情感的用户反馈中学习独立成本功能, 以便机器人可以优化它, 并同时任务和环境特定目标。 然而, 当模拟多种情感时, 这种方法效率低下, 无法推广到新情绪 。 在这项工作中, 我们利用情感不独立于彼此的事实: 情感是通过一个维伦斯- 刺激- 度度( VAD) 的潜在空间( VAD ) 相联的。 我们的关键思想是学习一个模型, 用于如何用用户标签绘制 VAD 地图。 考虑到轨图与目标VAD 之间的距离, 使这个单一模型能够代表所有情感的成本功能。 结果1) 所有用户反馈都有助于学习每一种情感; 2 机器人可以在空间中产生任何情感的轨迹; 它们可以通过一个潜在的空间空间定位的隐蔽空间的隐蔽空间, 而不是几个预设的空格空间的空格; 3) 机器人可以对用户生成的自然语言进行感光学反应反应, 通过在模拟实验中绘制一个简单的用户的图像实验中, 我们引入一个简单的用户测试, 将一个方法, 将它作为一个简单的机器人用于一个空间的图像的实验, 将一个测试到一个简单的机器人学习到一个简单的的机器人的机器人的机器人实验。