Prompt-based learning reformulates downstream tasks as cloze problems by combining the original input with a template. This technique is particularly useful in few-shot learning, where a model is trained on a limited amount of data. However, the limited templates and text used in few-shot prompt-based learning still leave significant room for performance improvement. Additionally, existing methods using model ensembles can constrain the model efficiency. To address these issues, we propose an augmentation method called MixPro, which augments both the vanilla input text and the templates through token-level, sentence-level, and epoch-level Mixup strategies. We conduct experiments on five few-shot datasets, and the results show that MixPro outperforms other augmentation baselines, improving model performance by an average of 5.08% compared to before augmentation.
翻译:基于Prompt学习通过将原始输入与模板结合成填空问题来重新定义下游任务,这种技术在少样本学习中非常有用。然而,少样本Prompt学习中使用的有限模板和文本仍然留下了相当大的性能空间。此外,使用模型集合的现有方法可能会限制模型效率。为了解决这些问题,我们提出了一种增广方法 MixPro,它通过令牌级、句子级和时代级 Mixup 策略来增广原始输入文本和模板。我们在五个少样本数据集上进行了实验,结果表明 MixPro 优于其他增广基线,相比增广前平均提高了 5.08% 的模型性能。