项目名称: 关于选择性集成学习框架的拓展性研究

项目编号: No.61473150

项目类型: 面上项目

立项/批准年度: 2015

项目学科: 其他

项目作者: 戴群

作者单位: 南京航空航天大学

项目金额: 81万元

中文摘要: 选择性集成学习研究的问题为:怎样从原始集成中选择一个模型子集,以实现对原集成在效率和预测性能上的改进。这是一个NP完全问题。本项目拟结合机器学习和模式识别领域的知识,并基于我们已有的研究成果,开展关于选择性集成学习框架的拓展性研究。具体而言,拟基于贪婪随机自适应搜索(GRASP)算法设计提出一种新型的选择性集成学习方法;开展旨在同时考虑集成多样性和精确度因素的选择性集成学习研究;基于强化学习技术设计选择性集成学习方法;最后,将基于极限学习机(ELM)构建一种新颖的神经网络集成系统,该系统将很自然地继承极限学习机的各种优点。项目以该系统为基础进一步研究多种选择性集成学习方法,分析与探讨在ELM集成中,各种方法新的特点、性能表现、优势与不足,并通过大量的基准实验验证各种方法的有效性,实现对已有的选择性集成学习模型在推广性能和效率两方面的进一步改进,更好地满足实际应用需求。

中文关键词: 选择性集成学习;贪婪随机自适应搜索算法;多样性;强化学习技术;极限学习机

英文摘要: Selective ensemble learning deals with the selection of a model subset from the original ensemble so as to improve its efficiency and predictive performance. It is a NP-complete problem. In this project, we will carry out extended research of the selective ensemble learning framework, combined with the knowledge in the field of machine learning and pattern recognition, and based on our existing research results. Specifically, we will propose a novel selective ensemble learning method based on Greedy Randomized Adaptive Search Procedure (GRASP); we will carry out investigation of selective ensemble learning by considering diversity and accuracy simultaneously; we will carry through the design of selective ensemble learning method based on reinforcement learning; finally, we will construct a novel ensemble system based on Extreme Learning Machine (ELM), which will naturally inherit various advantages of ELM. We will carry out further research on a variety of selective ensemble learning methods on the basis of the ELM ensemble, and analyze new characteristics, performances, advantages and disadvantages of various methods in ELM ensemble. And the effectiveness of various methods will be validated through lots of experiments on the benchmark datasets, so that the existing selective ensemble learning models will be further promoted in both their performance and efficiency, in order to better meet the demand of practical applications, and make new contributions to the field of ensemble learning.

英文关键词: Selective Ensemble Learning;Greedy Randomized Adaptive Search Procedure;Diversity;Reinforcement Learning;Extreme Learning Machine

成为VIP会员查看完整内容
2

相关内容

专知会员服务
42+阅读 · 2021年8月30日
专知会员服务
14+阅读 · 2021年6月26日
专知会员服务
36+阅读 · 2021年5月29日
专知会员服务
26+阅读 · 2021年4月22日
【SIGIR2021】基于嵌入的增量式时序知识图谱补全框架
专知会员服务
61+阅读 · 2021年4月21日
专知会员服务
30+阅读 · 2020年12月21日
专知会员服务
29+阅读 · 2020年12月7日
【经典书】Python金融大数据分析,566页pdf
专知会员服务
122+阅读 · 2020年8月1日
Web 框架的替代方案
InfoQ
0+阅读 · 2022年4月14日
Web 框架能解决什么问题?
InfoQ
0+阅读 · 2022年4月7日
【党史学习】胡锦涛重要论述(二)
中国图象图形学学会CSIG
0+阅读 · 2021年11月19日
浅谈主动学习(Active Learning)
凡人机器学习
31+阅读 · 2020年6月18日
社区分享 | Spark 玩转 TensorFlow 2.0
TensorFlow
15+阅读 · 2020年3月18日
机器也能学会如何学习?——元学习介绍
AINLP
19+阅读 · 2019年9月22日
出行即服务(MAAS)框架
智能交通技术
53+阅读 · 2019年5月22日
资源 | 机器学习必知的15大框架,欢迎补充!
数据分析
19+阅读 · 2018年9月11日
机器学习必知的15大框架
云栖社区
16+阅读 · 2017年12月10日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
VICE: Variational Inference for Concept Embeddings
Arxiv
0+阅读 · 2022年5月3日
Learning from Few Samples: A Survey
Arxiv
77+阅读 · 2020年7月30日
Arxiv
15+阅读 · 2019年9月11日
A Multi-Objective Deep Reinforcement Learning Framework
小贴士
相关VIP内容
专知会员服务
42+阅读 · 2021年8月30日
专知会员服务
14+阅读 · 2021年6月26日
专知会员服务
36+阅读 · 2021年5月29日
专知会员服务
26+阅读 · 2021年4月22日
【SIGIR2021】基于嵌入的增量式时序知识图谱补全框架
专知会员服务
61+阅读 · 2021年4月21日
专知会员服务
30+阅读 · 2020年12月21日
专知会员服务
29+阅读 · 2020年12月7日
【经典书】Python金融大数据分析,566页pdf
专知会员服务
122+阅读 · 2020年8月1日
相关资讯
Web 框架的替代方案
InfoQ
0+阅读 · 2022年4月14日
Web 框架能解决什么问题?
InfoQ
0+阅读 · 2022年4月7日
【党史学习】胡锦涛重要论述(二)
中国图象图形学学会CSIG
0+阅读 · 2021年11月19日
浅谈主动学习(Active Learning)
凡人机器学习
31+阅读 · 2020年6月18日
社区分享 | Spark 玩转 TensorFlow 2.0
TensorFlow
15+阅读 · 2020年3月18日
机器也能学会如何学习?——元学习介绍
AINLP
19+阅读 · 2019年9月22日
出行即服务(MAAS)框架
智能交通技术
53+阅读 · 2019年5月22日
资源 | 机器学习必知的15大框架,欢迎补充!
数据分析
19+阅读 · 2018年9月11日
机器学习必知的15大框架
云栖社区
16+阅读 · 2017年12月10日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员