Froth flotation is a common unit operation used in mineral processing. It serves to separate valuable mineral particles from worthless gangue particles in finely ground ores. The valuable mineral particles are hydrophobic and attach to bubbles of air injected into the pulp. This creates bubble-particle aggregates that rise to the top of the flotation column where they accumulate to a froth or foam layer that is removed through a launder for further processing. At the same time, the hydrophilic gangue particles settle and are removed continuously. The drainage of liquid due to capillarity is essential for the formation of a stable froth layer. This effect is included into a previously formulated hyperbolic system of partial differential equations that models the volume fractions of floating aggregates and settling hydrophilic solids [R. B\"{u}rger, S. Diehl and M.C. Mart\'i, {\it IMA J. Appl. Math.} {\bf 84} (2019) 930--973]. The construction of desired steady-state solutions with a froth layer is detailed and feasibility conditions on the feed volume fractions and the volumetric flows of feed, underflow and wash water are visualized in so-called operating charts. A monotone numerical scheme is derived and employed to simulate the dynamic behaviour of a flotation column. It is also proven that, under a suitable Courant-Friedrichs-Lewy (CFL) condition, the approximate volume fractions are bounded between zero and one when the initial data are.


翻译:Floth Floth Floth 是一种常见的矿物加工装置。 它可以将宝贵的矿物粒子与无价值的无用的黑桃粒子分离, 精细的地面矿石。 宝贵的矿物粒子具有疏水性, 并附在注入纸浆的气泡泡中。 这样, 泡沫粒子聚集到浮化柱的顶部, 通过洗钱将它们聚集到花粉或泡沫层, 以便进一步加工。 同时, 水文混合团粒子会固定并被持续清除。 由于毛细性而排入液体是形成稳定的芳香层的关键。 这一效应被包含在以前开发的超偏差分法系统中, 用来模拟漂浮集体和沉积液态固体的气泡粒子分数[R. B\\\{u}rger, S. Diehl和M. C. Mart\i, ~ IMA J. Appl. Math.}} rbf 84 (2019, 930- 973) 。 这种液态液态的液态溶液分解对于形成稳定状态层层来说, 也是精确的硬质流, 和精确的流, 在稳定的粉状结构中, 流中, 流中, 精确的硬化的硬化的硬化成成的硬化成成成成成的体压成成成成成的碳的体的体的体的体 也是在 。 。 。, 的硬体压状体压状体压状体 。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2008年12月31日
Convergence of the Discrete Minimum Energy Path
Arxiv
0+阅读 · 2022年4月15日
Arxiv
0+阅读 · 2022年4月14日
VIP会员
相关VIP内容
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员