We propose a task we name Portrait Interpretation and construct a dataset named Portrait250K for it. Current researches on portraits such as human attribute recognition and person re-identification have achieved many successes, but generally, they: 1) may lack mining the interrelationship between various tasks and the possible benefits it may bring; 2) design deep models specifically for each task, which is inefficient; 3) may be unable to cope with the needs of a unified model and comprehensive perception in actual scenes. In this paper, the proposed portrait interpretation recognizes the perception of humans from a new systematic perspective. We divide the perception of portraits into three aspects, namely Appearance, Posture, and Emotion, and design corresponding sub-tasks for each aspect. Based on the framework of multi-task learning, portrait interpretation requires a comprehensive description of static attributes and dynamic states of portraits. To invigorate research on this new task, we construct a new dataset that contains 250,000 images labeled with identity, gender, age, physique, height, expression, and posture of the whole body and arms. Our dataset is collected from 51 movies, hence covering extensive diversity. Furthermore, we focus on representation learning for portrait interpretation and propose a baseline that reflects our systematic perspective. We also propose an appropriate metric for this task. Our experimental results demonstrate that combining the tasks related to portrait interpretation can yield benefits. Code and dataset will be made public.


翻译:我们提议了一个名为Portrait解释(Portrait的解释)的任务,并为此建立一个名为Portrait250K的数据集。目前对人类属性识别和个人再识别等肖像学的研究取得了许多成功,但总体上说,这些研究:(1) 可能缺乏各种任务及其可能带来的益处之间的相互关系;(2) 具体为每项任务设计深度模型,这种模型效率低下;(3) 可能无法满足统一模型和实际场景全面认识的需求。在本文件中,拟议的肖像解释从新的系统角度承认人类的看法。我们将肖像的感知分为三个方面,即外观、时装和情感,并为每个方面设计相应的子任务。根据多任务学习框架,肖像解释要求全面描述静态属性和动态肖像状态。为了激励对这一新任务的研究,我们将建立一个包含25万个标有身份、性别、年龄、生理、高度、表达和整个身体和武器姿态的图像的新数据集。我们的数据集从51部收集,从而涵盖广泛的系统化解释,从而设计相应的次级任务。我们还将重点展示我们的公共数据结构,并展示我们这个基本任务。

0
下载
关闭预览

相关内容

[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年9月16日
Interpretable CNNs for Object Classification
Arxiv
20+阅读 · 2020年3月12日
Arxiv
19+阅读 · 2018年10月25日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
相关基金
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员