Natural language is perhaps the most flexible and intuitive way for humans to communicate tasks to a robot. Prior work in imitation learning typically requires each task be specified with a task id or goal image -- something that is often impractical in open-world environments. On the other hand, previous approaches in instruction following allow agent behavior to be guided by language, but typically assume structure in the observations, actuators, or language that limit their applicability to complex settings like robotics. In this work, we present a method for incorporating free-form natural language conditioning into imitation learning. Our approach learns perception from pixels, natural language understanding, and multitask continuous control end-to-end as a single neural network. Unlike prior work in imitation learning, our method is able to incorporate unlabeled and unstructured demonstration data (i.e. no task or language labels). We show this dramatically improves language conditioned performance, while reducing the cost of language annotation to less than 1% of total data. At test time, a single language conditioned visuomotor policy trained with our method can perform a wide variety of robotic manipulation skills in a 3D environment, specified only with natural language descriptions of each task (e.g. "open the drawer...now pick up the block...now press the green button..."). To scale up the number of instructions an agent can follow, we propose combining text conditioned policies with large pretrained neural language models. We find this allows a policy to be robust to many out-of-distribution synonym instructions, without requiring new demonstrations. See videos of a human typing live text commands to our agent at language-play.github.io


翻译:自然语言也许是人类向机器人传递任务的最灵活和直观的方式。 先前的模仿学习工作通常要求以任务id或目标图像来指定每项任务, 这在开放世界环境中往往是不切实际的。 另一方面, 先前的教学方法允许代理行为以语言为指导, 但通常在观察、 动作器或语言中假设结构, 限制其适用于机器人等复杂环境。 在此工作中, 我们提出了一个方法, 将自由形式的自然语言纳入模拟学习中。 我们的方法通常需要从像素、 自然语言理解和多任务持续控制端到终端中学习感知, 作为单一的神经网络。 与先前的模拟学习工作不同, 我们的方法可以包含无标签和非结构化的演示数据( 即没有任务或语言标签 ) 。 我们展示了这种快速改进的语言性能, 同时将语言注释的成本降低到总数据的1%以上。 在测试时, 我们所训练的单种语言状态, 由我们的方法所训练的实言式动作策略, 最终可以将一系列的机器人操作技能整合到...

0
下载
关闭预览

相关内容

最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
86+阅读 · 2020年12月2日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Arxiv
17+阅读 · 2019年3月28日
Arxiv
8+阅读 · 2018年7月12日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Top
微信扫码咨询专知VIP会员