Reliable application of machine learning is of primary importance to the practical deployment of deep learning methods. A fundamental challenge is that models are often unreliable due to overconfidence. In this paper, we estimate a model's reliability by measuring \emph{the agreement between its latent space, and the latent space of a foundation model}. However, it is challenging to measure the agreement between two different latent spaces due to their incoherence, \eg, arbitrary rotations and different dimensionality. To overcome this incoherence issue, we design a \emph{neighborhood agreement measure} between latent spaces and find that this agreement is surprisingly well-correlated with the reliability of a model's predictions. Further, we show that fusing neighborhood agreement into a model's predictive confidence in a post-hoc way significantly improves its reliability. Theoretical analysis and extensive experiments on failure detection across various datasets verify the effectiveness of our method on both in-distribution and out-of-distribution settings.


翻译:Translated Abstract: 机器学习的可靠应用对于深度学习方法的实际部署至关重要。一个基本的挑战是模型经常因为过度自信而不可靠。在本文中,我们通过测量模型的潜在空间与 基础模型 的潜在空间之间的协议来估计模型的可靠性。然而,由于这些潜在空间的不连贯性,如任意旋转和不同的维度,所以测量两个不同潜在空间之间的协议是具有挑战性的。为了克服这种不连贯性,我们设计了一种潜在空间间邻域协议(neighborhood agreement measure)方法,并发现潜在空间之间的这种协议与模型预测的可靠性有惊人的相关性。此外,我们证明将邻域协议融入模型预测的置信度中,可以极大地提高模型的可靠性。理论分析和在各种数据集上的故障检测的大量实验证明了我们方法在分布内和分布外情况下的有效性。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年6月14日
Arxiv
0+阅读 · 2023年6月14日
VIP会员
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员