The wireless blockchain network (WBN) concept, born from the blockchain deployed in wireless networks, has appealed to many network scenarios. Blockchain consensus mechanisms (CMs) are key to enabling nodes in a wireless network to achieve consistency without any trusted entity. However, consensus reliability will be seriously affected by the instability of communication links in wireless networks. Meanwhile, it is difficult for nodes in wireless scenarios to obtain a timely energy supply. Energy-intensive blockchain functions can quickly drain the power of nodes, thus degrading consensus performance. Fortunately, a symbiotic radio (SR) system enabled by cognitive backscatter communications can solve the above problems. In SR, the secondary transmitter (STx) transmits messages over the radio frequency (RF) signal emitted from a primary transmitter (PTx) with extremely low energy consumption, and the STx can provide multipath gain to the PTx in return. Such an approach is useful for almost all vote-based CMs, such as the Practical Byzantine Fault-tolerant (PBFT)-like and the RAFT-like CMs. This paper proposes symbiotic blockchain consensus (SBC) by transforming 6 PBFT-like and 4 RAFT-like state-of-the-art (SOTA) CMs to demonstrate universality. These new CMs will benefit from mutualistic transmission relationships in SR, making full use of the limited spectrum resources in WBN. Simulation results show that SBC can increase the consensus success rate of PBFT-like and RAFT-like by 54.1% and 5.8%, respectively, and reduce energy consumption by 9.2% and 23.7%, respectively.
翻译:暂无翻译