We classify compact 2-connected homogeneous spaces with the same rational cohomology as a product of spheres. This classification relies on spectral sequences, homotopy theory, and representation theory. We then apply this classification to two geometric problems. The first problem is the classification of all isoparametric hypersurfaces which admit a transitive isometry group on at least one focal manifold. This generalizes the classification of homogeneous isoparametric hypersurfaces by Hsiang and Lawson and gives a new, independent proof of their result. Secondly, we classify certain compact highly connected Tits buildings which admit a vertex transitive automorphism group. Such buildings arise as compactifications of symmetric spaces as well as from isoparametric submanifolds. This extends the recent classification of all compact connected Tits buildings which admit a chamber transitive automorphism group by Grundhofer, Knarr, and the author.
翻译:我们将紧凑的2-连接的同质空间分类为相同的理性共振学产物。 这一分类依赖于光谱序列、同质理论和代表理论。 然后,我们将这一分类应用于两个几何问题。 第一个问题是所有等对数超表层的分类,这些表层在至少一个焦数上接纳了一个中转性异质测量组。 这概括了由Shiang和Lawson对同质性等同性超表层的分类,并提供了其结果的新的、独立的证明。 其次,我们对某些高度连接的Tits建筑进行了分类,这些建筑中含有一个垂直中转式自动形态组。这些建筑是作为对称空间的紧凑性以及从对数子层产生的。这扩大了最近将格伦多费尔、Knarr和作者吸收一个室间转式自态组的所有连接的Tits建筑的分类。