Statistical arbitrage identifies and exploits temporal price differences between similar assets. We propose a unifying conceptual framework for statistical arbitrage and develop a novel deep learning solution, which finds commonality and time-series patterns from large panels in a data-driven and flexible way. First, we construct arbitrage portfolios of similar assets as residual portfolios from conditional latent asset pricing factors. Second, we extract the time series signals of these residual portfolios with one of the most powerful machine learning time-series solutions, a convolutional transformer. Last, we use these signals to form an optimal trading policy, that maximizes risk-adjusted returns under constraints. We conduct a comprehensive empirical comparison study with daily large cap U.S. stocks. Our optimal trading strategy obtains a consistently high out-of-sample Sharpe ratio and substantially outperforms all benchmark approaches. It is orthogonal to common risk factors, and exploits asymmetric local trend and reversion patterns. Our strategies remain profitable after taking into account trading frictions and costs. Our findings suggest a high compensation for arbitrageurs to enforce the law of one price.
翻译:统计套利确定并利用类似资产之间的时间价格差异。我们为统计套利提出统一的概念框架,并制定新的深层次学习解决方案,从大型板块中以数据驱动和灵活的方式找到共同性和时间序列模式。首先,我们从有条件的潜在资产定价因素中将类似资产作为剩余组合来构建套利组合作为剩余组合。第二,我们利用这些剩余组合的时间序列信号,以最强大的机器学习时间序列解决方案之一,即一个革命变异器。最后,我们利用这些信号来形成最佳贸易政策,在制约下最大限度地实现风险调整回报。我们开展了一项全面的经验性比较研究,对美国每日大宗股票进行。我们的最佳贸易战略获得了一贯高的超模版精锐比率,大大超越了所有基准方法。它与常见风险因素相交织,利用了不对称的地方趋势和再转换模式。我们的战略在考虑贸易摩擦和成本后仍然有利可图。我们的调查结果表明,对套利仲裁人实施单一价格法给予高的补偿。