Semantic diversity in Genetic Programming has proved to be highly beneficial in evolutionary search. We have witnessed a surge in the number of scientific works in the area, starting first in discrete spaces and moving then to continuous spaces. The vast majority of these works, however, have focused their attention on single-objective genetic programming paradigms, with a few exceptions focusing on Evolutionary Multi-objective Optimization (EMO). The latter works have used well-known robust algorithms, including the Non-dominated Sorting Genetic Algorithm II and the Strength Pareto Evolutionary Algorithm, both heavily influenced by the notion of Pareto dominance. These inspiring works led us to make a step forward in EMO by considering Multi-objective Evolutionary Algorithms Based on Decomposition (MOEA/D). We show, for the first time, how we can promote semantic diversity in MOEA/D in Genetic Programming.


翻译:遗传基因规划中的语义多样性已证明在进化搜索中非常有益。我们看到该地区科学工程的数量激增,首先是在离散空间开始,然后转移到连续空间。然而,这些工程的绝大多数都将其注意力集中在单一目标基因规划范式上,但有一些例外侧重于进化多目标优化(EMO),后者使用了众所周知的稳健算法,包括非主流分类遗传算法II和加强Pareto进化阿尔戈里什姆,两者都受到Pareto主导概念的严重影响。这些鼓舞人心的工作促使我们通过考虑基于分解(MOEA/D)的多目标进化阿尔戈里什姆,在电子基因规划中向前迈出了一步。我们第一次展示了我们如何能够在MOEA/D中促进语义多样性的方法。

0
下载
关闭预览

相关内容

Surge 是 iOS 与 macOS 平台上的 Web 开发人员工具与代理实用程序。 Surge - Advanced Web Debugging Proxy for Mac & iOS
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
计算机 | 中低难度国际会议信息6条
Call4Papers
7+阅读 · 2019年5月16日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
NIPS 2017:贝叶斯深度学习与深度贝叶斯学习(讲义+视频)
机器学习研究会
36+阅读 · 2017年12月10日
【推荐】视频目标分割基础
机器学习研究会
9+阅读 · 2017年9月19日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年6月4日
Arxiv
0+阅读 · 2021年6月4日
Arxiv
0+阅读 · 2021年6月1日
Arxiv
5+阅读 · 2019年10月31日
Arxiv
5+阅读 · 2017年12月14日
VIP会员
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
计算机 | 中低难度国际会议信息6条
Call4Papers
7+阅读 · 2019年5月16日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
NIPS 2017:贝叶斯深度学习与深度贝叶斯学习(讲义+视频)
机器学习研究会
36+阅读 · 2017年12月10日
【推荐】视频目标分割基础
机器学习研究会
9+阅读 · 2017年9月19日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员