This work overviews a new, recent success of phase-field modelling: its application to predicting the evolution of the corrosion front and the associated structural integrity challenges. Despite its important implications for society, predicting corrosion damage has been an elusive goal for scientists and engineers. The application of phase-field modelling to corrosion not only enables tracking the electrolyte-metal interface but also provides an avenue to explicitly simulate the underlying mesoscale physical processes. This lays the grounds for developing the first generation of mechanistic corrosion models, which can capture key phenomena such as film rupture and repassivation, the transition from activation- to diffusion-controlled corrosion, interactions with mechanical fields, microstructural and electrochemical effects, intergranular corrosion, material biodegradation, and the interplay with other environmentally-assisted damage phenomena such as hydrogen embrittlement.
翻译:暂无翻译