While blockchain technology triggers new industrial and technological revolutions, it also brings new challenges. Recently, a large number of new scams with a "blockchain" sock-puppet continue to emerge, such as Ponzi schemes, money laundering, etc., seriously threatening financial security. Existing fraud detection methods in blockchain mainly concentrate on manual feature and graph analytics, which first construct a homogeneous transaction graph using partial blockchain data and then use graph analytics to detect anomaly, resulting in a loss of pattern information. In this paper, we mainly focus on Ponzi scheme detection and propose HFAug, a generic Heterogeneous Feature Augmentation module that can capture the heterogeneous information associated with account behavior patterns and can be combined with existing Ponzi detection methods. HFAug learns the metapath-based behavior characteristics in an auxiliary heterogeneous interaction graph, and aggregates the heterogeneous features to corresponding account nodes in the homogeneous one where the Ponzi detection methods are performed. Comprehensive experimental results demonstrate that our HFAug can help existing Ponzi detection methods achieve significant performance improvement on Ethereum datasets, suggesting the effectiveness of heterogeneous information on detecting Ponzi schemes.
翻译:虽然链式技术触发了新的工业和技术革命,但它也带来了新的挑战。最近,大量带有“链式”袜子板块的新骗局继续出现,如庞氏计划、洗钱等,严重威胁金融安全。在链式系统中现有的欺诈侦查方法主要集中在人工特征和图解分析学上,这些方法首先使用部分链式数据构建一个同质交易图,然后使用图解分析学来检测异常现象,从而造成模式性信息的损失。在本文中,我们主要侧重于庞氏计划检测并提出HFAug,这是一个通用的超异特性增强模块,能够捕捉到与账户行为模式有关的多种信息,并且可以与现有的庞氏检测方法相结合。HFAug在辅助混合互动图中学习基于共性的行为特征,并将各种特征汇总到进行庞氏检测方法的同质账户中的相应节点。全面实验结果表明,我们的HFAug能够帮助现有的庞氏检测方法在Eneum式数据集上取得显著的绩效改进,这表明了异性信息在检测庞氏计划方面的有效性。