This paper presents a method for time-lapse 3D cell analysis. Specifically, we consider the problem of accurately localizing and quantitatively analyzing sub-cellular features, and for tracking individual cells from time-lapse 3D confocal cell image stacks. The heterogeneity of cells and the volume of multi-dimensional images presents a major challenge for fully automated analysis of morphogenesis and development of cells. This paper is motivated by the pavement cell growth process, and building a quantitative morphogenesis model. We propose a deep feature based segmentation method to accurately detect and label each cell region. An adjacency graph based method is used to extract sub-cellular features of the segmented cells. Finally, the robust graph based tracking algorithm using multiple cell features is proposed for associating cells at different time instances. Extensive experiment results are provided and demonstrate the robustness of the proposed method. The code is available on Github and the method is available as a service through the BisQue portal.
翻译:本文为时间折叠 3D 单元格分析提供了一个方法。 具体地说, 我们考虑精确定位和定量分析子细胞特征的问题, 以及从时间折叠 3D 组合细胞图像堆中跟踪单个细胞的问题。 单元格的异质性和多维图像的体积对完全自动分析细胞的形成和发育提出了重大挑战。 本文受人行道细胞生长过程的驱动, 并构建一个量化的细胞生成模型。 我们提出了基于深度特征的分解方法, 以准确检测和标注每个单元格区域。 使用了基于相邻图形的方法来提取分块单元格的子细胞特征。 最后, 提议使用基于稳健图形的跟踪算法, 在不同的时间将细胞连接。 提供了广泛的实验结果, 并展示了拟议方法的稳健性。 代码在 Github 上, 方法可以通过 BisQue 门户网站获得服务 。