For a graph $G$, a subset $S\subseteq V(G)$ is called a resolving set of $G$ if, for any two vertices $u,v\in V(G)$, there exists a vertex $w\in S$ such that $d(w,u)\neq d(w,v)$. The Metric Dimension problem takes as input a graph $G$ on $n$ vertices and a positive integer $k$, and asks whether there exists a resolving set of size at most $k$. In another metric-based graph problem, Geodetic Set, the input is a graph $G$ and an integer $k$, and the objective is to determine whether there exists a subset $S\subseteq V(G)$ of size at most $k$ such that, for any vertex $u \in V(G)$, there are two vertices $s_1, s_2 \in S$ such that $u$ lies on a shortest path from $s_1$ to $s_2$. These two classical problems turn out to be intractable with respect to the natural parameter, i.e., the solution size, as well as most structural parameters, including the feedback vertex set number and pathwidth. Some of the very few existing tractable results state that they are both FPT with respect to the vertex cover number $vc$. More precisely, we observe that both problems admit an FPT algorithm running in time $2^{\mathcal{O}(vc^2)}\cdot n^{\mathcal{O}(1)}$, and a kernelization algorithm that outputs a kernel with $2^{\mathcal{O}(vc)}$ vertices. We prove that unless the Exponential Time Hypothesis fails, Metric Dimension and Geodetic Set, even on graphs of bounded diameter, neither admit an FPT algorithm running in time $2^{o(vc^2)}\cdot n^{\mathcal(1)}$, nor a kernelization algorithm that reduces the solution size and outputs a kernel with $2^{o(vc)}$ vertices. The versatility of our technique enables us to apply it to both these problems. We only know of one other problem in the literature that admits such a tight lower bound. Similarly, the list of known problems with exponential lower bounds on the number of vertices in kernelized instances is very short.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Deep Anomaly Detection with Outlier Exposure
Arxiv
17+阅读 · 2018年12月21日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员