This paper builds on top of a paper we have published very recently, in which we have proposed a novel approach to prime factorization (PF) by quantum annealing, where 8,219,999=32,749x251 was the highest prime product we were able to factorize -- which, to the best of our knowledge is the largest number which was ever factorized by means of a quantum device. The series of annealing experiments which led us to these results, however, did not follow a straight-line path; rather, they involved a convoluted trial-and-error process, full of failed or partially-failed attempts and backtracks, which only in the end drove us to find the successful annealing strategies. In this paper, we delve into the reasoning behind our experimental decisions and provide an account of some of the attempts we have taken before conceiving the final strategies that allowed us to achieve the results. This involves also a bunch of ideas, techniques, and strategies we investigated which, although turned out to be inferior wrt. those we adopted in the end, may instead provide insights to a more-specialized audience of D-Wave users and practitioners. In particular, we show the following insights: ($i$) different initialization techniques affect performances, among which flux biases are effective when targeting locally-structured embeddings; ($ii$) chain strengths have a lower impact in locally-structured embeddings compared to problem relying on global embeddings; ($iii$) there is a trade-off between broken chain and excited CFAs, suggesting an incremental annealing offset remedy approach based on the modules instead of single qubits. Thus, by sharing the details of our experiences, we aim to provide insights into the evolving landscape of quantum annealing, and help people access and effectively use D-Wave quantum annealers.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Cold-start Sequential Recommendation via Meta Learner
Arxiv
15+阅读 · 2020年12月10日
Reasoning on Knowledge Graphs with Debate Dynamics
Arxiv
14+阅读 · 2020年1月2日
VIP会员
相关资讯
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员