We study semi-supervised sequence generation tasks where labeled data are too scarce to effectively finetune a model and at the same time few-shot prompting of a large language model (LLM) has suboptimal performance. This happens when a task, such as parsing, is expensive to annotate and also unfamiliar to a pretrained LLM. In this paper, we present a discovery that student models distilled from an in-context learned LLM can often generalize better than their teacher on such tasks. Leveraging this finding, we present a new method -- multistage collaborative knowledge distillation from an LLM (MCKD) -- for such tasks. MCKD first few-shot prompts an LLM to produce pseudolabels for unlabeled data. At each intermediate knowledge distillation (KD) stage, a new pair of students is trained on disjoint partitions of the pseudolabeled data. Each student then produces new and improved pseudolabels for its unseen partition to be used in the next stage of distillation. We demonstrate the advantage of multistage cross-partition labeling on several syntactic and semantic parsing tasks. On CRAFT biomedical parsing, for example, 3-stage MCKD with 50 labeled examples outperforms the prompted LLM and vanilla KD by 7.5% and 3.7% parsing F1, respectively, and matches the performance of supervised finetuning with 500 examples.
翻译:暂无翻译