Parametric shape optimization aims at minimizing an objective function f(x) where x are CAD parameters. This task is difficult when f is the output of an expensive-to-evaluate numerical simulator and the number of CAD parameters is large. Most often, the set of all considered CAD shapes resides in a manifold of lower effective dimension in which it is preferable to build the surrogate model and perform the optimization. In this work, we uncover the manifold through a high-dimensional shape mapping and build a new coordinate system made of eigenshapes. The surrogate model is learned in the space of eigenshapes: a regularized likelihood maximization provides the most relevant dimensions for the output. The final surrogate model is detailed (anisotropic) with respect to the most sensitive eigenshapes and rough (isotropic) in the remaining dimensions. Last, the optimization is carried out with a focus on the critical dimensions, the remaining ones being coarsely optimized through a random embedding and the manifold being accounted for through a replication strategy. At low budgets, the methodology leads to a more accurate model and a faster optimization than the classical approach of directly working with the CAD parameters.
翻译:在x为 CAD 参数的情况下, 度量形状优化旨在最小化一个目标函数 f(x) f(x), 即 x 是 CAD 参数。 当 f 是昂贵到要评估的数字模拟器和 CAD 参数数量巨大的输出时, 这项任务就很困难。 多数情况下, 所有考虑的 CAD 形状的组合都位于一个低有效维度的方块中, 其中最好建立代金形模型模型并进行优化。 在这项工作中, 我们通过高维形状绘图来发现方块, 并建立一个由 eigenshape 组成的新协调系统。 代金形模型是在 eigenshape 空间学习的: 常规化的可能性最大化为输出提供了最相关的维度。 最终的代金字塔模型详细( antropic), 涉及剩余维度中最敏感的 eigenshape 和 rb( otropic) 的维度。 最后, 优化是在以关键维度为重点进行,, 其余的方块则通过随机嵌嵌入和元块块化计算为最精确优化。 在复制战略中, 。 在低预算下, 方法导致更精确的模型和最快速的 CAD 。