Recently the shape-restricted inference has gained popularity in statistical and econometric literature in order to relax the linear or quadratic covariate effect in regression analyses. The typical shape-restricted covariate effect includes monotonic increasing, decreasing, convexity or concavity. In this paper, we introduce the shape-restricted inference to the celebrated Cox regression model (SR-Cox), in which the covariate response is modeled as shape-restricted additive functions. The SR-Cox regression approximates the shape-restricted functions using a spline basis expansion with data driven choice of knots. The underlying minimization of negative log-likelihood function is formulated as a convex optimization problem, which is solved with an active-set optimization algorithm. The highlight of this algorithm is that it eliminates the superfluous knots automatically. When covariate effects include combinations of convex or concave terms with unknown forms and linear terms, the most interesting finding is that SR-Cox produces accurate linear covariate effect estimates which are comparable to the maximum partial likelihood estimates if indeed the forms are known. We conclude that concave or convex SR-Cox models could significantly improve nonlinear covariate response recovery and model goodness of fit.


翻译:最近,形状限制的推断在统计学和计量经济学文献中越来越受欢迎,以放松回归分析中的线性或二次曲线变异效应。典型的形状限制的共变效应包括单调增速、降速、凝固度或凝固度。在本文中,我们引入了形状限制的引用,以备用的Cox回归模型(SR-Cox)为模型,使共变反应以形状限制的添加功能为模型。SR-Cox回归法以受数据驱动的结节选择的螺旋基扩展为形状限制的函数近似形状限制的函数。负日志类似功能的最小化基本作用被设计成一个曲线优化问题,通过主动设定的优化算法加以解决。这种算法的重点是,它自动消除多余的结结。当共变式效应包括以未知的形式和线性术语组合,最有趣的发现,SR-Cox产生精确的线性共变曲线影响模型,如果已知的反差模型确实可以与最大程度的反差性反应模型相比较,那么我们就会作出相同的反差性反应。

0
下载
关闭预览

相关内容

机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Msfvenom 常用生成 Payload 命令
黑白之道
9+阅读 · 2019年2月23日
机器学习可解释性工具箱XAI
专知
11+阅读 · 2019年2月8日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】(Keras)LSTM多元时序预测教程
机器学习研究会
24+阅读 · 2017年8月14日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年8月31日
Arxiv
0+阅读 · 2021年8月30日
Arxiv
0+阅读 · 2021年8月29日
VIP会员
相关VIP内容
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Msfvenom 常用生成 Payload 命令
黑白之道
9+阅读 · 2019年2月23日
机器学习可解释性工具箱XAI
专知
11+阅读 · 2019年2月8日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】(Keras)LSTM多元时序预测教程
机器学习研究会
24+阅读 · 2017年8月14日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员