Recently the shape-restricted inference has gained popularity in statistical and econometric literature in order to relax the linear or quadratic covariate effect in regression analyses. The typical shape-restricted covariate effect includes monotonic increasing, decreasing, convexity or concavity. In this paper, we introduce the shape-restricted inference to the celebrated Cox regression model (SR-Cox), in which the covariate response is modeled as shape-restricted additive functions. The SR-Cox regression approximates the shape-restricted functions using a spline basis expansion with data driven choice of knots. The underlying minimization of negative log-likelihood function is formulated as a convex optimization problem, which is solved with an active-set optimization algorithm. The highlight of this algorithm is that it eliminates the superfluous knots automatically. When covariate effects include combinations of convex or concave terms with unknown forms and linear terms, the most interesting finding is that SR-Cox produces accurate linear covariate effect estimates which are comparable to the maximum partial likelihood estimates if indeed the forms are known. We conclude that concave or convex SR-Cox models could significantly improve nonlinear covariate response recovery and model goodness of fit.
翻译:最近,形状限制的推断在统计学和计量经济学文献中越来越受欢迎,以放松回归分析中的线性或二次曲线变异效应。典型的形状限制的共变效应包括单调增速、降速、凝固度或凝固度。在本文中,我们引入了形状限制的引用,以备用的Cox回归模型(SR-Cox)为模型,使共变反应以形状限制的添加功能为模型。SR-Cox回归法以受数据驱动的结节选择的螺旋基扩展为形状限制的函数近似形状限制的函数。负日志类似功能的最小化基本作用被设计成一个曲线优化问题,通过主动设定的优化算法加以解决。这种算法的重点是,它自动消除多余的结结。当共变式效应包括以未知的形式和线性术语组合,最有趣的发现,SR-Cox产生精确的线性共变曲线影响模型,如果已知的反差模型确实可以与最大程度的反差性反应模型相比较,那么我们就会作出相同的反差性反应。