This paper describes the design, implementation, and evaluation of Otak, a system that allows two non-colluding cloud providers to run machine learning (ML) inference without knowing the inputs to inference. Prior work for this problem mostly relies on advanced cryptography such as two-party secure computation (2PC) protocols that provide rigorous guarantees but suffer from high resource overhead. Otak improves efficiency via a new 2PC protocol that (i) tailors recent primitives such as function and homomorphic secret sharing to ML inference, and (ii) uses trusted hardware in a limited capacity to bootstrap the protocol. At the same time, Otak reduces trust assumptions on trusted hardware by running a small code inside the hardware, restricting its use to a preprocessing step, and distributing trust over heterogeneous trusted hardware platforms from different vendors. An implementation and evaluation of Otak demonstrates that its CPU and network overhead converted to a dollar amount is 5.4$-$385$\times$ lower than state-of-the-art 2PC-based works. Besides, Otak's trusted computing base (code inside trusted hardware) is only 1,300 lines of code, which is 14.6$-$29.2$\times$ lower than the code-size in prior trusted hardware-based works.
翻译:本文描述了Otak的设计、实施和评价,Otak是一个允许两个非云源提供商在不知道对推论的投入的情况下操作机器学习(ML)推断的系统,其设计、实施和评价是允许两个非熔云提供商在不知道对推论的投入的情况下操作机器学习(ML)推断的系统。以前,这一问题的工作主要依赖于先进的加密,例如提供严格保障但资源管理费用高昂的两方安全计算(2PC)协议。Otak通过一个新的2PC协议提高了效率,该协议(一)将功能和同质秘密共享等最新原始设备与ML推论相匹配,以及(二)利用有限的能力使用可信赖的硬件来诱导协议。与此同时,Otak通过在硬件内部运行一个小的代码,将它的使用限制在预处理阶段,以及在不同供应商的多种信任的硬件平台上分配信任度。Otak的实施和评估表明,其CPU和网络管理费转换成美元数额比基于2PC的状态标准低5.4美元,385美元。此外,Otak的可信赖的计算基数基础(在信任硬件内部值为1300美元)只有14.2级的硬件。