Machine learning, with its advances in Deep Learning has shown great potential in analysing time series in the past. However, in many scenarios, additional information is available that can potentially improve predictions, by incorporating it into the learning methods. This is crucial for data that arises from e.g., sensor networks that contain information about sensor locations. Then, such spatial information can be exploited by modeling it via graph structures, along with the sequential (time) information. Recent advances in adapting Deep Learning to graphs have shown promising potential in various graph-related tasks. However, these methods have not been adapted for time series related tasks to a great extent. Specifically, most attempts have essentially consolidated around Spatial-Temporal Graph Neural Networks for time series forecasting with small sequence lengths. Generally, these architectures are not suited for regression or classification tasks that contain large sequences of data. Therefore, in this work, we propose an architecture capable of processing these long sequences in a multivariate time series regression task, using the benefits of Graph Neural Networks to improve predictions. Our model is tested on two seismic datasets that contain earthquake waveforms, where the goal is to predict intensity measurements of ground shaking at a set of stations. Our findings demonstrate promising results of our approach, which are discussed in depth with an additional ablation study.


翻译:在深学习中,随着机器学习的进步,过去在分析时间序列方面表现出巨大的潜力。然而,在许多设想中,现有的额外信息通过将它纳入学习方法,有可能改进预测,对包含传感器位置信息的传感器网络等数据至关重要。然后,可以通过图形结构以及顺序(时间)信息模型利用这类空间信息。在将深学习与图表改造成图表方面的最新进展在各种图表相关任务中显示了有希望的潜力。然而,这些方法在很大的程度上没有适应与时间序列有关的任务。具体地说,大多数尝试基本上围绕空间-时空图神经网络进行整合,以进行小序列时间序列预测。一般而言,这些结构不适合进行包含大量数据序列的回归或分类任务。因此,在这项工作中,我们建议了一种结构,能够用多变时间序列回归任务处理这些长序列,利用图形神经网络的好处来改进预测。我们的模型在两个包含地震波状阵列的地震数据集上进行了测试。在两个地震波状阵列的地震阵列网络上,我们的目标就是预测一个有希望的深度的地面测量结果。

0
下载
关闭预览

相关内容

【图与几何深度学习】Graph and geometric deep learning,49页ppt
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
力荐! Xavier Bresson的GNN在线讲座1-6
图与推荐
0+阅读 · 2021年12月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
27+阅读 · 2020年6月19日
Financial Time Series Representation Learning
Arxiv
10+阅读 · 2020年3月27日
Arxiv
13+阅读 · 2019年11月14日
Arxiv
24+阅读 · 2018年10月24日
Arxiv
23+阅读 · 2018年10月1日
VIP会员
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
力荐! Xavier Bresson的GNN在线讲座1-6
图与推荐
0+阅读 · 2021年12月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关论文
Arxiv
27+阅读 · 2020年6月19日
Financial Time Series Representation Learning
Arxiv
10+阅读 · 2020年3月27日
Arxiv
13+阅读 · 2019年11月14日
Arxiv
24+阅读 · 2018年10月24日
Arxiv
23+阅读 · 2018年10月1日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员