Large-scale vision-language pre-trained (VLP) models are prone to hallucinate non-existent visual objects when generating text based on visual information. In this paper, we exhaustively probe the object hallucination problem from three aspects. First, we examine various state-of-the-art VLP models, showing that models achieving better scores on standard metrics(e.g., BLEU-4, CIDEr) could hallucinate objects more frequently. Second, we investigate how different types of visual features in VLP influence hallucination, including region-based, grid-based, and patch-based. Surprisingly, we find that patch-based features perform the best and smaller patch resolution yields a non-trivial reduction in object hallucination. Third, we decouple various VLP objectives and demonstrate their effectiveness in alleviating object hallucination. Based on that, we propose a new pre-training loss, object masked language modeling, to further reduce object hallucination. We evaluate models on both COCO (in-domain) and NoCaps (out-of-domain) datasets with our improved CHAIR metric. Furthermore, we investigate the effects of various text decoding strategies and image augmentation methods on object hallucination.
翻译:在根据视觉信息生成文本时,大规模视觉语言先行(VLP)模型容易产生幻觉,产生不存在的视觉物体。在本文中,我们从三个方面详尽地探究物体幻觉问题。首先,我们研究各种先进的VLP模型,显示在标准指标(如BLEU-4、CIDER)上取得更好分数的模型可以更频繁地产生幻觉。第二,我们调查VLP中不同类型的视觉特征如何影响幻觉,包括基于区域的、基于网格的和基于补丁的。令人惊讶的是,我们发现基于补补丁的特征能够产生最佳和较小的补丁解答,在目标幻觉方面产生非三、我们分解各种VLP目标,并展示其在减轻物体幻觉方面的效力。在此基础上,我们提议一种新的培训前损失、遮蔽语言模型,以进一步减少对象幻觉。我们用改进的CDCO(内部)和Cap(外部)数据模型来评估我们改进的CAIR模型和图像增强的图像的模型。此外,我们还要调查各种图像增强CHAIR矩阵的影响。