We present a sublinear query algorithm for outputting a near-optimal low-rank approximation to any positive semidefinite Toeplitz matrix $T \in \mathbb{R}^{d \times d}$. In particular, for any integer rank $k \leq d$ and $\epsilon,\delta > 0$, our algorithm makes $\tilde{O} \left (k^2 \cdot \log(1/\delta) \cdot \text{poly}(1/\epsilon) \right )$ queries to the entries of $T$ and outputs a rank $\tilde{O} \left (k \cdot \log(1/\delta)/\epsilon\right )$ matrix $\tilde{T} \in \mathbb{R}^{d \times d}$ such that $\| T - \tilde{T}\|_F \leq (1+\epsilon) \cdot \|T-T_k\|_F + \delta \|T\|_F$. Here, $\|\cdot\|_F$ is the Frobenius norm and $T_k$ is the optimal rank-$k$ approximation to $T$, given by projection onto its top $k$ eigenvectors. $\tilde{O}(\cdot)$ hides $\text{polylog}(d) $ factors. Our algorithm is \emph{structure-preserving}, in that the approximation $\tilde{T}$ is also Toeplitz. A key technical contribution is a proof that any positive semidefinite Toeplitz matrix in fact has a near-optimal low-rank approximation which is itself Toeplitz. Surprisingly, this basic existence result was not previously known. Building on this result, along with the well-established off-grid Fourier structure of Toeplitz matrices [Cybenko'82], we show that Toeplitz $\tilde{T}$ with near optimal error can be recovered with a small number of random queries via a leverage-score-based off-grid sparse Fourier sampling scheme.
翻译:我们为输出一个接近最佳的 82 位数的亚线查询算法 { 位数的近似最佳 } 近似于任何正端半端端端的 Toeplitz 基数$T\ in\ mathb{R ⁇ d\time d} 美元。 特别是, 对于任何整列 $k\leq d$ 和 $\ epsilon > 0, 我们的算法使 美元基数 $\\\ tdb} 基數 $( 1/\ delta)\\ 基數值 近端端端端端端的近端點 。 一個基數值的數值 \ t ⁇ F\\\ t=lequlickr} 和输出值的數级 $@delta{O} 數值的數值是正端的數值 。