Repair operators are often used for constraint handling in constrained combinatorial optimization. We investigate the (1+1)~EA equipped with a tailored jump-and-repair operation that can be used to probabilistically repair infeasible offspring in graph problems. Instead of evolving candidate solutions to the entire graph, we expand the genotype to allow the (1+1)~EA to develop in parallel a feasible solution together with a growing subset of the instance (an induced subgraph). With this approach, we prove that the EA is able to probabilistically simulate an iterative compression process used in classical fixed-parameter algorithmics to obtain a randomized FPT performance guarantee on three NP-hard graph problems. For $k$-VertexCover, we prove that the (1+1) EA using focused jump-and-repair can find a $k$-vertex cover (if one exists) in $O(2^k n^2\log n)$ iterations in expectation. This leads to an exponential (in $k$) improvement over the best-known parameterized bound for evolutionary algorithms on VertexCover. For the $k$-FeedbackVertexSet problem in tournaments, we prove that the EA finds a feasible feedback set in $O(2^kk!n^2\log n)$ iterations in expectation, and for OddCycleTransversal, we prove the optimization time for the EA is $O(3^k k m n^2\log n)$. For the latter two problems, this constitutes the first parameterized result for any evolutionary algorithm. We discuss how to generalize the framework to other parameterized graph problems closed under induced subgraphs and report experimental results that illustrate the behavior of the algorithm on a concrete instance class.


翻译:修理操作员通常用于限制组合优化中的制约处理 。 我们调查了配置有定制的跳动和修复操作的 1+1~EA 的定制 n- handard 算法操作, 可用于在图形问题中随机修复不可行的后代。 对于 $k$- VertexCover, 我们证明, 使用重点跳动和修复选项的 1+1 EA 可以同时开发一个可行的解决方案, 并同时增加实例的子集( 诱导子图 ) 。 有了这个方法, 我们证明 EA 能够以概率方式模拟一个迭代压缩程序, 用于经典固定参数算法的 N- compater 算法, 以获得三个 NPT- hard 的随机化 FPT 性功能保证 。 对于 $k_ Vertexxxxxxx 的预测结果, 我们证明, 在 VertexC 的 Oralxal2 里, 在 Vexxilalalalalation 中, 将Oral- froisal droism 。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年3月13日
Arxiv
28+阅读 · 2021年9月18日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员