Repair operators are often used for constraint handling in constrained combinatorial optimization. We investigate the (1+1)~EA equipped with a tailored jump-and-repair operation that can be used to probabilistically repair infeasible offspring in graph problems. Instead of evolving candidate solutions to the entire graph, we expand the genotype to allow the (1+1)~EA to develop in parallel a feasible solution together with a growing subset of the instance (an induced subgraph). With this approach, we prove that the EA is able to probabilistically simulate an iterative compression process used in classical fixed-parameter algorithmics to obtain a randomized FPT performance guarantee on three NP-hard graph problems. For $k$-VertexCover, we prove that the (1+1) EA using focused jump-and-repair can find a $k$-vertex cover (if one exists) in $O(2^k n^2\log n)$ iterations in expectation. This leads to an exponential (in $k$) improvement over the best-known parameterized bound for evolutionary algorithms on VertexCover. For the $k$-FeedbackVertexSet problem in tournaments, we prove that the EA finds a feasible feedback set in $O(2^kk!n^2\log n)$ iterations in expectation, and for OddCycleTransversal, we prove the optimization time for the EA is $O(3^k k m n^2\log n)$. For the latter two problems, this constitutes the first parameterized result for any evolutionary algorithm. We discuss how to generalize the framework to other parameterized graph problems closed under induced subgraphs and report experimental results that illustrate the behavior of the algorithm on a concrete instance class.
翻译:修理操作员通常用于限制组合优化中的制约处理 。 我们调查了配置有定制的跳动和修复操作的 1+1~EA 的定制 n- handard 算法操作, 可用于在图形问题中随机修复不可行的后代。 对于 $k$- VertexCover, 我们证明, 使用重点跳动和修复选项的 1+1 EA 可以同时开发一个可行的解决方案, 并同时增加实例的子集( 诱导子图 ) 。 有了这个方法, 我们证明 EA 能够以概率方式模拟一个迭代压缩程序, 用于经典固定参数算法的 N- compater 算法, 以获得三个 NPT- hard 的随机化 FPT 性功能保证 。 对于 $k_ Vertexxxxxxx 的预测结果, 我们证明, 在 VertexC 的 Oralxal2 里, 在 Vexxilalalalalation 中, 将Oral- froisal droism 。