Effective real-time monitoring is a foundation of digital twin technology, crucial for detecting material degradation and maintaining the structural integrity of nuclear systems to ensure both safety and operational efficiency. Traditional physical sensor systems face limitations such as installation challenges, high costs, and difficulty measuring critical parameters in hard-to-reach or harsh environments, often resulting in incomplete data coverage. Machine learning-driven virtual sensors, integrated within a digital twin framework, offer a transformative solution by enhancing physical sensor capabilities to monitor critical degradation indicators like pressure, velocity, and turbulence. However, conventional machine learning models struggle with real-time monitoring due to the high-dimensional nature of reactor data and the need for frequent retraining. This paper introduces the use of Deep Operator Networks (DeepONet) as a core component of a digital twin framework to predict key thermal-hydraulic parameters in the hot leg of an AP-1000 Pressurized Water Reactor (PWR). DeepONet serves as a dynamic and scalable virtual sensor by accurately mapping the interplay between operational input parameters and spatially distributed system behaviors. In this study, DeepONet is trained with different operational conditions, which relaxes the requirement of continuous retraining, making it suitable for online and real-time prediction components for digital twin. Our results show that DeepONet achieves accurate predictions with low mean squared error and relative L2 error and can make predictions on unknown data 1400 times faster than traditional CFD simulations. This speed and accuracy enable DeepONet to synchronize with the physical system in real-time, functioning as a dynamic virtual sensor that tracks degradation-contributing conditions.
翻译:暂无翻译