Recognizing places using Lidar in large-scale environments is challenging due to the sparse nature of point cloud data. In this paper we present BVMatch, a Lidar-based frame-to-frame place recognition framework, that is capable of estimating 2D relative poses. Based on the assumption that the ground area can be approximated as a plane, we uniformly discretize the ground area into grids and project 3D Lidar scans to bird's-eye view (BV) images. We further use a bank of Log-Gabor filters to build a maximum index map (MIM) that encodes the orientation information of the structures in the images. We analyze the orientation characteristics of MIM theoretically and introduce a novel descriptor called bird's-eye view feature transform (BVFT). The proposed BVFT is insensitive to rotation and intensity variations of BV images. Leveraging the BVFT descriptors, we unify the Lidar place recognition and pose estimation tasks into the BVMatch framework. The experiments conducted on three large-scale datasets show that BVMatch outperforms the state-of-the-art methods in terms of both recall rate of place recognition and pose estimation accuracy.
翻译:由于点云数据的稀少性质,在大型环境中使用利达尔的定位位置是具有挑战性的。在本文中,我们介绍了基于利达尔的框架到框架的框架识别框架BVMatch,这个框架能够估计2D相对的构成。基于地面区域可以近似为平面的假设,我们统一地将地面区域分解成网格和项目3D利达尔扫描为鸟眼图像进行3D利达尔扫描。我们进一步使用一个Log-Gabor过滤器库来建立一个最大指数地图(MIM)来编码图像结构的定向信息。我们从理论上分析了MIM的方向特征,并采用了称为鸟眼特征变形的新描述符(BVFT)。拟议的BVFT对B图像的旋转和强度变化不敏感。利用BVFT解析仪,我们将利达尔位置识别和估算任务统一到BVMatch框架中。在三个大型数据集上进行的实验显示,BVMSatcherposefferations reviewal-restical-restical-deal-restical-ressation-lagets。