The increasing complexity of modern configurable systems makes it critical to improve the level of automation in the process of system configuration. Such automation can also improve the agility of the development cycle, allowing for rapid and automated integration of decoupled workflows. In this paper, we present a new framework for automated configuration of systems representable as state machines. The framework leverages model checking and satisfiability modulo theories (SMT) and can be applied to any application domain representable using SMT formulas. Our approach can also be applied modularly, improving its scalability. Furthermore, we show how optimization can be used to produce configurations that are best according to some metric and also more likely to be understandable to humans. We showcase this framework and its flexibility by using it to configure a CGRA memory tile for various image processing applications.


翻译:现代配置系统日益复杂,因此在系统配置过程中提高自动化水平至关重要,这种自动化还可以提高发展周期的灵活度,使分离的工作流程能够迅速和自动地融合。在本文件中,我们提出了一个新的框架,用于以国家机器代表的系统自动配置。该框架利用模型检查和可坐性模调理论(SMT),并可用于使用 SMT 公式代表的任何应用领域。我们的方法也可以模块化地应用,提高它的可伸缩性。此外,我们展示了如何利用优化来生成最适合某些计量的配置,而且更易为人类所理解的配置。我们展示了这一框架及其灵活性,利用它为各种图像处理应用程序配置 CGRA 记忆图案。

0
下载
关闭预览

相关内容

Automator是苹果公司为他们的Mac OS X系统开发的一款软件。 只要通过点击拖拽鼠标等操作就可以将一系列动作组合成一个工作流,从而帮助你自动的(可重复的)完成一些复杂的工作。Automator还能横跨很多不同种类的程序,包括:查找器、Safari网络浏览器、iCal、地址簿或者其他的一些程序。它还能和一些第三方的程序一起工作,如微软的Office、Adobe公司的Photoshop或者Pixelmator等。
【KDD2020-Tutorial】自动推荐系统,Automated Recommendation System
专知会员服务
60+阅读 · 2020年3月19日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
AutoML与轻量模型大列表
专知
8+阅读 · 2019年4月29日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
机器人开发库软件大列表
专知
10+阅读 · 2018年3月18日
论文笔记 | How NOT To Evaluate Your Dialogue System
科技创新与创业
13+阅读 · 2017年12月23日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
Meta-Learning with Implicit Gradients
Arxiv
13+阅读 · 2019年9月10日
Arxiv
7+阅读 · 2018年3月22日
Arxiv
20+阅读 · 2018年1月17日
VIP会员
相关VIP内容
【KDD2020-Tutorial】自动推荐系统,Automated Recommendation System
专知会员服务
60+阅读 · 2020年3月19日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
AutoML与轻量模型大列表
专知
8+阅读 · 2019年4月29日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
机器人开发库软件大列表
专知
10+阅读 · 2018年3月18日
论文笔记 | How NOT To Evaluate Your Dialogue System
科技创新与创业
13+阅读 · 2017年12月23日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
Top
微信扫码咨询专知VIP会员