Combinatorial samplers are algorithmic schemes devised for the approximate- and exact-size generation of large random combinatorial structures, such as context-free words, various tree-like data structures, maps, tilings, RNA molecules. They can be adapted to combinatorial specifications with additional parameters, allowing for a more flexible control over the output profile of parametrised combinatorial patterns. One can control, for instance, the number of leaves, profile of node degrees in trees or the number of certain sub-patterns in generated strings. However, such a flexible control requires an additional and nontrivial tuning procedure. Using techniques of convex optimisation, we present an efficient tuning algorithm for multi-parametric combinatorial specifications. Our algorithm works in polynomial time in the system description length, the number of tuning parameters, the number of combinatorial classes in the specification, and the logarithm of the total target size. We demonstrate the effectiveness of our method on a series of practical examples, including rational, algebraic, and so-called P\'olya specifications. We show how our method can be adapted to a broad range of less typical combinatorial constructions, including symmetric polynomials, labelled sets and cycles with cardinality lower bounds, simple increasing trees or substitutions. Finally, we discuss some practical aspects of our prototype tuner implementation and provide its benchmark results.
翻译:组合采样器是用于粗略和精确生成大型随机组合结构的算法方法,如无背景单词、各种树类类数据结构、地图、平面图、RNA分子等。它们可以调整以配有附加参数的组合性规格,从而更灵活地控制组合式模式的输出剖面。例如,可以控制树叶的数量、树中的节度剖面或生成字符串中某些子阵列的数量。然而,这种灵活控制需要额外和非三边调控程序。我们使用convex优化技术,为多参数组合性组合性规格提供高效调算法。我们算法在系统描述长度、调制参数数量、组合类数量、总目标大小的对数。我们在一系列实际例子中展示了我们的方法的有效性,包括理性、高位和所谓的P\'olya型调调调调调程序。我们展示了我们的方法在系统描述的多参数长度、调定型结构结构的广度上可以调整我们的方法,包括结构结构的缩略度、结构结构的缩略图的缩度,最后显示我们的方法可以调整到结构结构结构的缩缩度,以及结构结构结构的缩缩缩图。