Combinatorial samplers are algorithmic schemes devised for the approximate- and exact-size generation of large random combinatorial structures, such as context-free words, various tree-like data structures, maps, tilings, RNA molecules. They can be adapted to combinatorial specifications with additional parameters, allowing for a more flexible control over the output profile of parametrised combinatorial patterns. One can control, for instance, the number of leaves, profile of node degrees in trees or the number of certain sub-patterns in generated strings. However, such a flexible control requires an additional and nontrivial tuning procedure. Using techniques of convex optimisation, we present an efficient tuning algorithm for multi-parametric combinatorial specifications. Our algorithm works in polynomial time in the system description length, the number of tuning parameters, the number of combinatorial classes in the specification, and the logarithm of the total target size. We demonstrate the effectiveness of our method on a series of practical examples, including rational, algebraic, and so-called P\'olya specifications. We show how our method can be adapted to a broad range of less typical combinatorial constructions, including symmetric polynomials, labelled sets and cycles with cardinality lower bounds, simple increasing trees or substitutions. Finally, we discuss some practical aspects of our prototype tuner implementation and provide its benchmark results.


翻译:组合采样器是用于粗略和精确生成大型随机组合结构的算法方法,如无背景单词、各种树类类数据结构、地图、平面图、RNA分子等。它们可以调整以配有附加参数的组合性规格,从而更灵活地控制组合式模式的输出剖面。例如,可以控制树叶的数量、树中的节度剖面或生成字符串中某些子阵列的数量。然而,这种灵活控制需要额外和非三边调控程序。我们使用convex优化技术,为多参数组合性组合性规格提供高效调算法。我们算法在系统描述长度、调制参数数量、组合类数量、总目标大小的对数。我们在一系列实际例子中展示了我们的方法的有效性,包括理性、高位和所谓的P\'olya型调调调调调程序。我们展示了我们的方法在系统描述的多参数长度、调定型结构结构的广度上可以调整我们的方法,包括结构结构的缩略度、结构结构的缩略图的缩度,最后显示我们的方法可以调整到结构结构结构的缩缩度,以及结构结构结构的缩缩缩图。

0
下载
关闭预览

相关内容

【图与几何深度学习】Graph and geometric deep learning,49页ppt
专知会员服务
41+阅读 · 2021年4月2日
专知会员服务
60+阅读 · 2020年3月19日
【斯坦福大学】Gradient Surgery for Multi-Task Learning
专知会员服务
46+阅读 · 2020年1月23日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年10月15日
Arxiv
0+阅读 · 2021年10月14日
Arxiv
13+阅读 · 2019年1月26日
Arxiv
5+阅读 · 2018年5月31日
Arxiv
9+阅读 · 2018年3月28日
VIP会员
相关VIP内容
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员