Understanding the black-box representations in Deep Neural Networks (DNN) is an essential problem in deep learning. In this work, we propose Graph-Based Similarity (GBS) to measure the similarity of layer features. Contrary to previous works that compute the similarity directly on the feature maps, GBS measures the correlation based on the graph constructed with hidden layer outputs. By treating each input sample as a node and the corresponding layer output similarity as edges, we construct the graph of DNN representations for each layer. The similarity between graphs of layers identifies the correspondences between representations of models trained in different datasets and initializations. We demonstrate and prove the invariance property of GBS, including invariance to orthogonal transformation and invariance to isotropic scaling, and compare GBS with CKA. GBS shows state-of-the-art performance in reflecting the similarity and provides insights on explaining the adversarial sample behavior on the hidden layer space.


翻译:深神经网络(DNN) 的黑盒表达方式是深层学习中的一个基本问题。 在这项工作中,我们提出基于图形的相似性(GBS) 以测量层特征的相似性。 与直接计算地貌图上的相似性的先前工作相反, GBS 测量基于以隐藏层输出构建的图形的关联性。 通过将每个输入样本作为节点对待,并将相应的层输出结果与边缘相类似, 我们构建了每个层的 DNN 表达方式的图表。 层图的相似性确定了不同数据集和初始化模型的表达方式之间的对应性。 我们演示并证明GBS 的不一致性属性, 包括不易于正向变化的变异性, 以及不易于等地缩放, 并将 GBS 和 CKA 进行比较。 GBS 显示反映相似性时的状态表现, 并提供洞察关于隐层空间的对称抽样行为的洞察力。

0
下载
关闭预览

相关内容

【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
155+阅读 · 2020年5月26日
专知会员服务
53+阅读 · 2019年12月22日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
图神经网络(Graph Neural Networks,GNN)综述
极市平台
104+阅读 · 2019年11月27日
Graph Neural Network(GNN)最全资源整理分享
深度学习与NLP
339+阅读 · 2019年7月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Arxiv
9+阅读 · 2021年10月26日
Knowledge Embedding Based Graph Convolutional Network
Arxiv
24+阅读 · 2021年4月23日
Arxiv
3+阅读 · 2020年4月29日
VIP会员
相关VIP内容
【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
155+阅读 · 2020年5月26日
专知会员服务
53+阅读 · 2019年12月22日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
图神经网络(Graph Neural Networks,GNN)综述
极市平台
104+阅读 · 2019年11月27日
Graph Neural Network(GNN)最全资源整理分享
深度学习与NLP
339+阅读 · 2019年7月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Top
微信扫码咨询专知VIP会员