Magnetic resonance (MR) images collected in 2D scanning protocols typically have large inter-slice spacing, resulting in high in-plane resolution but reduced through-plane resolution. Super-resolution techniques can reduce the inter-slice spacing of 2D scanned MR images, facilitating the downstream visual experience and computer-aided diagnosis. However, most existing super-resolution methods are trained at a fixed scaling ratio, which is inconvenient in clinical settings where MR scanning may have varying inter-slice spacings. To solve this issue, we propose Hierarchical Feature Conditional Diffusion (HiFi-Diff)} for arbitrary reduction of MR inter-slice spacing. Given two adjacent MR slices and the relative positional offset, HiFi-Diff can iteratively convert a Gaussian noise map into any desired in-between MR slice. Furthermore, to enable fine-grained conditioning, the Hierarchical Feature Extraction (HiFE) module is proposed to hierarchically extract conditional features and conduct element-wise modulation. Our experimental results on the publicly available HCP-1200 dataset demonstrate the high-fidelity super-resolution capability of HiFi-Diff and its efficacy in enhancing downstream segmentation performance.
翻译:磁共振(MR)图像在2D扫描协议中收集通常具有较大的层间距,导致高平面分辨率但减少了顺向分辨率。超分辨率技术可减少2D扫描MR图像的层间距,促进下游的视觉体验和计算机辅助诊断。然而,大多数现有的超分辨率方法是以固定的缩放比例训练的,这在临床环境中MR扫描可能具有不同层间距的情况下是不方便的。为了解决这个问题,我们提出一种基于分级特征条件扩散的方法( HiFi-Diff),用于任意降低MR层间间距。给定两个相邻的MR切片和相对位置偏移量,HiFi-Diff可以迭代地将高斯噪声映射转换为任意所需的中间MR切片。此外,为了实现精细的调节,提出了分层特征提取(HiFE)模块,用于分层提取条件特征和进行逐元调制。我们在公开的HCP-1200数据集上的实验结果表明了HiFi-Diff的高保真超分辨率能力以及它在增强下游分割性能方面的功效。