In [Dai et al, Multi. Model. Simul., 2020], a structure-preserving gradient flow method was proposed for the ground state calculation in Kohn-Sham density functional theory, based on which a linearized method was developed in [Hu, et al, EAJAM, accepted] for further improving the numerical efficiency. In this paper, a complete convergence analysis is delivered for such a linearized method for the all-electron Kohn-Sham model. Temporally, the convergence, the asymptotic stability, as well as the structure-preserving property of the linearized numerical scheme in the method is discussed following previous works, while spatially, the convergence of the h-adaptive mesh method is demonstrated following [Chen et al, Multi. Model. Simul., 2014], with a key study on the boundedness of the Kohn-Sham potential for the all-electron Kohn-Sham model. Numerical examples confirm the theoretical results very well.
翻译:在[Dai等人,Multi.model.Simul.,2020年]中,在Kohn-Sham密度功能理论中,为地面状态计算提出了结构保护梯度流法,根据这种方法,[Hu, et al,EAJAM, 接受了]为进一步提高数值效率制定了线性方法。在本文件中,对全电子Kohn-Sham模型的这种线性方法进行了完全的趋同分析。在此前的作品之后,讨论了该方法中线性数字方法的趋同、无症状稳定性以及结构保留属性,而在空间上,H-adaptivemesh方法的趋同在[Chen et al, Mul. Simul., 2014年]之后,在对全电子Kohn-Sham模型的界限性潜力进行一项关键研究后,展示了Hh-adptivemesh方法的趋同性。数字实例证实了理论结果。</s>