The integration of behavioral phenomena into mechanistic models of cognitive function is a fundamental staple of cognitive science. Yet, researchers are beginning to accumulate increasing amounts of data without having the temporal or monetary resources to integrate these data into scientific theories. We seek to overcome these limitations by incorporating existing machine learning techniques into an open-source pipeline for the automated construction of quantitative models. This pipeline leverages the use of neural architecture search to automate the discovery of interpretable model architectures, and automatic differentiation to automate the fitting of model parameters to data. We evaluate the utility of these methods based on their ability to recover quantitative models of human information processing from synthetic data. We find that these methods are capable of recovering basic quantitative motifs from models of psychophysics, learning and decision making. We also highlight weaknesses of this framework and discuss future directions for their mitigation.


翻译:将行为现象纳入认知功能的机械模型是认知科学的基本主因。然而,研究人员正在开始积累越来越多的数据,而没有时间或资金资源将这些数据纳入科学理论。我们设法克服这些限制,将现有的机器学习技术纳入一个开放源头管道,用于自动构建定量模型。这一管道利用神经结构搜索手段,将发现可解释模型结构自动化,自动区分模型参数与数据的匹配。我们根据这些方法从合成数据中恢复人类信息处理定量模型的能力来评估这些方法的效用。我们发现,这些方法能够从心理物理、学习和决策模型中恢复基本的数量模型。我们还强调了这一框架的弱点,并讨论了减缓这些模型的未来方向。

0
下载
关闭预览

相关内容

Automator是苹果公司为他们的Mac OS X系统开发的一款软件。 只要通过点击拖拽鼠标等操作就可以将一系列动作组合成一个工作流,从而帮助你自动的(可重复的)完成一些复杂的工作。Automator还能横跨很多不同种类的程序,包括:查找器、Safari网络浏览器、iCal、地址簿或者其他的一些程序。它还能和一些第三方的程序一起工作,如微软的Office、Adobe公司的Photoshop或者Pixelmator等。
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Arxiv
6+阅读 · 2020年10月8日
Arxiv
12+阅读 · 2018年9月5日
Arxiv
3+阅读 · 2018年6月24日
VIP会员
相关VIP内容
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Top
微信扫码咨询专知VIP会员