We consider the influence maximization problem over a temporal graph, where there is a single fixed source. We deviate from the standard model of influence maximization, where the goal is to choose the set of most influential vertices. Instead, in our model we are given a fixed vertex, or source, and the goal is to find the best time steps to transmit so that the influence of this vertex is maximized. We frame this problem as a spreading process that follows a variant of the susceptible-infected-susceptible (SIS) model and we focus on four objective functions. In the MaxSpread objective, the goal is to maximize the total number of vertices that get infected at least once. In the MaxViral objective, the goal is to maximize the number of vertices that are infected at the same time step. In the MaxViralTstep objective, the goal is to maximize the number of vertices that are infected at a given time step. Finally, in MinNonViralTime, the goal is to maximize the total number of vertices that get infected every $d$ time steps. We perform a thorough complexity theoretic analysis for these four objectives over three different scenarios: (1) the unconstrained setting where the source can transmit whenever it wants; (2) the window-constrained setting where the source has to transmit at either a predetermined, or a shifting window; (3) the periodic setting where the temporal graph has a small period. We prove that all of these problems, with the exception of MaxSpread for periodic graphs, are intractable even for very simple underlying graphs.


翻译:----- 成为影响力人物很难:固定源下的时间图中的影响最大化复杂性 我们考虑在时间图上进行影响最大化问题,其中有一个单一的固定源点。我们偏离了影响最大化的标准模型,在该模型中目标是选择最具影响力的顶点。相反,在我们的模型中,给定一个固定的顶点或源,目标是找到最佳转移时间,以便最大化这个顶点的影响力。我们将这个问题描述为一个传播过程,该过程遵循易感-感染-易感(SIS)模型的一种变体,并且我们关注四个目标函数。在MaxSpread目标函数中,目标是最大化至少感染一次的顶点总数。在MaxViral目标函数中,目标是最大化同时感染的顶点数。在MaxViralTstep目标函数中,目标是在给定的时间步中最大化被感染的顶点数。最后,在MinNonViralTime中,目标是最大化每$d$时间步感染的顶点总数。我们针对这四个目标函数在三种不同场景下进行全面的复杂性理论分析:(1)无约束的情况下,源点可以在任何时候进行传输;(2)在窗口约束的情况下,源点必须在预定的或移动的窗口中进行传输;(3)周期性情况下,时间图具有很小的周期。我们证明,所有这些问题,除了周期图的MaxSpread,即使对于非常简单的底层图,也是不可处理的。

0
下载
关闭预览

相关内容

《用于目标跟踪的认知雷达框架》85页报告
专知会员服务
72+阅读 · 2023年2月27日
KDD 2022 | GraphMAE:自监督掩码图自编码器
专知会员服务
19+阅读 · 2022年7月14日
【ICML2020】统一预训练伪掩码语言模型
专知会员服务
25+阅读 · 2020年7月23日
利用CUR分解加速交互式相似度模型的检索
PaperWeekly
0+阅读 · 2022年11月10日
推荐系统多任务学习上分技巧
机器学习与推荐算法
0+阅读 · 2022年10月19日
CIKM2022 | CROLoss: 一种推荐系统中检索模型的可定制损失函数
机器学习与推荐算法
2+阅读 · 2022年8月10日
什么是可编程代理,为什么我们需要它
InfoQ
0+阅读 · 2022年6月3日
跨越注意力:Cross-Attention
我爱读PAMI
172+阅读 · 2018年6月2日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年5月12日
Disentangled Information Bottleneck
Arxiv
12+阅读 · 2020年12月22日
VIP会员
相关资讯
利用CUR分解加速交互式相似度模型的检索
PaperWeekly
0+阅读 · 2022年11月10日
推荐系统多任务学习上分技巧
机器学习与推荐算法
0+阅读 · 2022年10月19日
CIKM2022 | CROLoss: 一种推荐系统中检索模型的可定制损失函数
机器学习与推荐算法
2+阅读 · 2022年8月10日
什么是可编程代理,为什么我们需要它
InfoQ
0+阅读 · 2022年6月3日
跨越注意力:Cross-Attention
我爱读PAMI
172+阅读 · 2018年6月2日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员