大模型(LLMs)现在是 NLP 领域的最主流方法之一了。
这个趋势带来的主要问题之一,就是大模型的训练/微调/推理需要的内存也越来越多。
举例来说,即使 RTX 3090 有着 24GB 的 RAM,是除了 A100 之外显存最大的显卡。但使用一块 RTX 3090 依然无法 fp32 精度训练最小号的 LLaMA-6B。
本文总结一些 Memory-Efficient 的 LLMs 的训练/微调/推理方法,包括:
● fp16
● int8
● LoRA
● Gradient checkpointing
● Torch FSDP
● CPU offloading
首先,我们需要了解如何根据参数量估计模型大致所需的 RAM,这在实践中有很重要的参考意义。我们需要通过估算设置 batch_size,设置模型精度,选择微调方法和参数分布方法等。
接下来,我们用 LLaMA-6B 模型为例估算其大致需要的内存。
首先考虑精度对所需内存的影响:
其次,考虑模型需要的 RAM 大致分三个部分:
模型参数:等于参数量*每个参数所需内存。
对于 fp32,LLaMA-6B 需要 6B*4 bytes = 24GB内存
对于 int8,LLaMA-6B 需要 6B*1 byte = 6GB
梯度:同上,等于参数量*每个梯度参数所需内存。
优化器参数:不同的优化器所储存的参数量不同。
对于常用的 AdamW 来说,需要储存两倍的模型参数(用来储存一阶和二阶momentum)。
fp32 的 LLaMA-6B,AdamW 需要 6B*8 bytes = 48 GB
int8 的 LLaMA-6B,AdamW 需要 6B*2 bytes = 12 GB
除此之外,CUDA kernel 也会占据一些 RAM,大概 1.3GB 左右,查看方式如下。
综上,int8 精度的 LLaMA-6B 模型部分大致需要 6GB+6GB+12GB+1.3GB = 25.3GB 左右。
再根据LLaMA的架构(hidden_size = 4096, intermediate_size =11008, num_hidden_layers = 32, context_length = 2048)计算中间变量内存。
每个 instance 需要:
所以一张 A100(80GB RAM)大概可以在 int8 精度;batch_size = 50 的设定下进行全参数训练。
查看消费级显卡的内存和算力:
2023 GPU Benchmark and Graphics Card Comparison Chart
混合精度训练的大致思路是在 forward pass 和 gradient computation 的时候使用 fp16 来加速,但是在更新参数时使用 fp32。
用 torch 实现:
CUDA Automatic Mixed Precision examples
torch fp16 推理:直接使用 model.half() 将模型转换为fp16.
使用 Huggingface Transformers:在 TrainingArguments 里声明 fp16=True
https://huggingface.co/docs/transformers/perf_train_gpu_one#fp16-training
Int8 是个很极端的数据类型,它最多只能表示 - 128~127 的数字,并且完全没有精度。
为了在训练和 inference 中使用这个数据类型,bitsandbytes 使用了两个方法最大程度地降低了其带来的误差:
1. vector-wise quantization
2. mixed precision decompasition
Huggingface 在这篇文章中用动图解释了 quantization 的实现:
论文:
借助 Huggingface PEFT,使用 int8 训练 opt-6.5B 的完整流程:
https://github.com/huggingface/peft/blob/main/examples/int8_training/Finetune_opt_bnb_peft.ipynb
Low-Rank Adaptation 是微调 LLMs 最常用的省内存方法之一。
Explore Gradient-Checkpointing in PyTorch
Torch FSDP+CPU offload
更多阅读
#投 稿 通 道#
让你的文字被更多人看到
如何才能让更多的优质内容以更短路径到达读者群体,缩短读者寻找优质内容的成本呢?答案就是:你不认识的人。
总有一些你不认识的人,知道你想知道的东西。PaperWeekly 或许可以成为一座桥梁,促使不同背景、不同方向的学者和学术灵感相互碰撞,迸发出更多的可能性。
PaperWeekly 鼓励高校实验室或个人,在我们的平台上分享各类优质内容,可以是最新论文解读,也可以是学术热点剖析、科研心得或竞赛经验讲解等。我们的目的只有一个,让知识真正流动起来。
📝 稿件基本要求:
• 文章确系个人原创作品,未曾在公开渠道发表,如为其他平台已发表或待发表的文章,请明确标注
• 稿件建议以 markdown 格式撰写,文中配图以附件形式发送,要求图片清晰,无版权问题
• PaperWeekly 尊重原作者署名权,并将为每篇被采纳的原创首发稿件,提供业内具有竞争力稿酬,具体依据文章阅读量和文章质量阶梯制结算
📬 投稿通道:
• 投稿邮箱:hr@paperweekly.site
• 来稿请备注即时联系方式(微信),以便我们在稿件选用的第一时间联系作者
• 您也可以直接添加小编微信(pwbot02)快速投稿,备注:姓名-投稿
△长按添加PaperWeekly小编
🔍
现在,在「知乎」也能找到我们了
进入知乎首页搜索「PaperWeekly」
点击「关注」订阅我们的专栏吧