Divergences or similarity measures between probability distributions have become a very useful tool for studying different aspects of statistical objects such as time series, networks and images. Notably not every divergence provides identical results when applied to the same problem. Therefore it is convenient to have the widest possible set of divergences to be applied to the problems under study. Besides this choice an essential step in the analysis of every statistical object is the mapping of each one of their representing values into an alphabet of symbols conveniently chosen. In this work we attack both problems, that is, the choice of a family of divergences and the way to do the map into a symbolic sequence. For advancing in the first task we work with the family of divergences known as the Burbea-Rao centroids (BRC) and for the second one we proceed by mapping the original object into a symbolic sequence through the use of ordinal patterns. Finally we apply our proposals to analyse simulated and real time series and to real textured images. The main conclusion of our work is that the best BRC, at least in the studied cases, is the Jensen Shannon divergence, besides the fact that it verifies some interesting formal properties.
翻译:概率分布之间的差异或相似度度是研究统计对象的不同方面,例如时间序列、网络和图像的一个非常有用的工具。值得注意的是,并不是每个差异在应用同一问题时都提供相同的结果。因此,对所研究的问题采用最广泛的差异范围是方便的。除了这一选择外,分析每个统计对象的一个重要步骤是将其代表的数值映射成一个方便选择的符号的字母。在这项工作中,我们处理两个问题,即选择一个差异的大家庭和将地图变成一个象征序列的方法。在第一项任务中,我们与被称为布尔比亚-拉奥人(BRC)的分歧大家庭合作,而第二个任务则通过使用圆形图案模式将原始对象映射成一个符号序列。最后,我们应用我们的建议来分析模拟和实际的时间序列,以及真实的纹理图像。我们工作的主要结论是,至少在研究案例中,最佳的BRC,至少在研究案例中,是詹森·香农差异。此外,我们还要核实一些有趣的正式属性。