It is important for infrastructure managers to maintain a high standard to ensure user satisfaction during a lifecycle of infrastructures. Surveillance cameras and visual inspections have enabled progress toward automating the detection of anomalous features and assessing the occurrence of the deterioration. Frequently, collecting damage data constraints time consuming and repeated inspections. One-class damage detection approach has a merit that only the normal images enables us to optimize the parameters. Simultaneously, the visual explanation using the heat map enable us to understand the localized anomalous feature. We propose a civil-purpose application to automate one-class damage detection using the fully-convolutional data description (FCDD). We also visualize the explanation of the damage feature using the up-sampling-based activation map with the Gaussian up-sampling from the receptive field of the fully convolutional network (FCN). We demonstrate it in experimental studies: concrete damage and steel corrosion and mention its usefulness and future works.
翻译:基础设施管理者必须保持高标准,以确保基础设施生命周期内的用户满意度;监视摄像机和目视检查使发现异常特征的自动化以及评估恶化的发生情况的工作得以取得进展; 经常收集损坏数据需要花费时间和反复检查; 单级损坏探测方法的优点是只有正常图像才能使我们优化参数; 同时,使用热图的直观解释使我们能够理解局部异常特征; 我们提出一个民用应用软件,利用全面革命数据描述(FCDD)将单级损坏探测自动化。 我们还利用基于取样的激活图与Gausian从完全革命网络(FCN)可容纳的场进行上层取样,对损坏特征的解释进行视觉化分析。 我们在实验研究中展示了这一点:具体损坏和钢腐蚀,并提到其效用和未来工程。</s>