Combinatorial optimization problems are encountered in many practical contexts such as logistics and production, but exact solutions are particularly difficult to find and usually NP-hard for considerable problem sizes. To compute approximate solutions, a zoo of generic as well as problem-specific variants of local search is commonly used. However, which variant to apply to which particular problem is difficult to decide even for experts. In this paper we identify three independent algorithmic aspects of such local search algorithms and formalize their sequential selection over an optimization process as Markov Decision Process (MDP). We design a deep graph neural network as policy model for this MDP, yielding a learned controller for local search called NeuroLS. Ample experimental evidence shows that NeuroLS is able to outperform both, well-known general purpose local search controllers from Operations Research as well as latest machine learning-based approaches.
翻译:在物流和生产等许多实际情况下都遇到组合优化问题,但精确的解决方案特别难以找到,而且对于相当大的问题大小通常很难找到。为了计算近似解决方案,通常使用本地搜索的通用和特定问题的变种。然而,即使对专家来说,也难以决定对哪一种变种适用特定问题。在本文件中,我们确定了这种本地搜索算法的三个独立的算法方面,并正式确定了它们相对于优化过程的顺序选择,如Markov决定程序(MDP)。我们设计了一个深图神经网络作为该MDP的政策模型,为本地搜索产生一个称为NeuroLS的学习控制器。大量实验证据表明,NeuroLS能够超越业务研究中众所周知的通用本地搜索控制器以及最新的机器学习方法。