In combinatorial causal bandits (CCB), the learning agent chooses at most $K$ variables in each round to intervene, collects feedback from the observed variables, with the goal of minimizing expected regret on the target variable $Y$. Different from all prior studies on causal bandits, CCB needs to deal with exponentially large action space. We study under the context of binary generalized linear models (BGLMs) with a succinct parametric representation of the causal models. We present the algorithm BGLM-OFU for Markovian BGLMs (i.e. no hidden variables) based on the maximum likelihood estimation method, and show that it achieves $O(\sqrt{T}\log T)$ regret, where $T$ is the time horizon. For the special case of linear models with hidden variables, we apply causal inference techniques such as the do-calculus to convert the original model into a Markovian model, and then show that our BGLM-OFU algorithm and another algorithm based on the linear regression both solve such linear models with hidden variables. Our novelty includes (a) considering the combinatorial intervention action space and the general causal models including ones with hidden variables, (b) integrating and adapting techniques from diverse studies such as generalized linear bandits and online influence maximization, and (c) not relying on unrealistic assumptions such as knowing the joint distribution of the parents of $Y$ under all interventions used in some prior studies.


翻译:在组合性因果强盗(CCB)中,学习代理商在每轮中最多选择K$的变量来干预,从观察到的变量中收集反馈,目标是最大限度地减少对目标变量的预期遗憾(Y美元)。 CCB不同于以前对因果强盗的所有研究,需要处理指数性大型行动空间。我们在二元通用线性模型(BGLMM)中研究,对因果模型进行简明的参数表示。我们根据最大可能性估计方法为Markovian BGLM-OFUM(即没有隐藏变量)提供了BGLM-OFU算法和基于线性回归的另一种算法(即没有隐藏变量),并表明它达到了美元(sqrt{T ⁇ log T)的预期遗憾,而美元是时间范围。对于包含隐藏变量的线性模型的特殊案例,我们运用了因果推论技术,例如将原模型转换为Markovian模型,然后显示我们的BGLM-OFU的算法和基于线性回归法的另一种算法(即没有隐藏变量)的线性模型,我们的新颖式研究包括(abinalimalimal lial dial dialimalimestalimistial dial dial dial distration distration ex) imisal ex ex ex ex ex ex ex ex ex ex exismissation immismismismismismismismation immation imation imation imation imation imation imation imation exismation imation exismation ex ex ex ex ex ex impecuduction impecuductionsal immismismismism ex ex ex ex ex ex ex ex exism ex ex ex ex ex ex imation imation exual immismism imm imation imation ex imation imations immismismismismismismismismal ex ex

0
下载
关闭预览

相关内容

不可错过!700+ppt《因果推理》课程!杜克大学Fan Li教程
专知会员服务
69+阅读 · 2022年7月11日
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
76+阅读 · 2021年3月16日
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
专知会员服务
123+阅读 · 2020年9月8日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
专知会员服务
161+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年10月6日
Arxiv
0+阅读 · 2022年10月4日
Arxiv
14+阅读 · 2020年12月17日
Arxiv
110+阅读 · 2020年2月5日
VIP会员
相关VIP内容
不可错过!700+ppt《因果推理》课程!杜克大学Fan Li教程
专知会员服务
69+阅读 · 2022年7月11日
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
76+阅读 · 2021年3月16日
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
专知会员服务
123+阅读 · 2020年9月8日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
专知会员服务
161+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员