The Open Radio Access Network (O-RAN) architecture is reshaping the telecommunications landscape by enhancing network flexibility, openness, and intelligence. This paper establishes the requirements, evaluates the design tradeoffs, and introduces a scalable architecture and prototype of an open-source O-RAN experimentation platform within the Aerial Experimentation and Research Platform for Advanced Wireless (AERPAW), an at scale testbed that integrates unmanned aerial vehicles (UAVs) with advanced wireless network technologies, offering experimentation in both outdoor testbed and emulation via a custom digital twin (DT). Through a series of aerial experiments, we evaluate FlexRIC, an open-source RAN Intelligent Controller, within the AERPAW hardware-software platform for network data monitoring, providing valuable insights into the proposed integration and revealing opportunities for leveraging O-RAN to create custom service based optimizations for cellular connected UAVs. We discuss the challenges and potential use cases of this integration and demonstrate the use of a generative artificial intelligence model for generating realistic data based on collected real-world data to support AERPAW's DT.
翻译:暂无翻译