The Open Radio Access Network (O-RAN) architecture enables the deployment of third-party applications on the RAN Intelligent Controllers (RICs) to provide Mobile Network Operators (MNOs) with different functionality. However, the operation of third-party applications in the Near Real-Time RIC (Near-RT RIC), known as xApps, can result in conflicting interactions. Each xApp can independently modify the same control parameters to achieve distinct outcomes, which has the potential to cause performance degradation and network instability. The current conflict detection and mitigation solutions in the literature assume that all conflicts are known a priori, which does not always hold due to complex and often hidden relationships between control parameters and Key Performance Indicators (KPIs). In this paper, we introduce a novel data-driven Graph Neural Network (GNN)-based method for reconstructing conflict graphs. Specifically, we leverage GraphSAGE, an inductive learning framework, to dynamically learn the hidden relationships between xApps, control parameters, and KPIs. Our experimental results validate our proposed method for reconstructing conflict graphs and identifying all types of conflicts in O-RAN.
翻译:暂无翻译