The widely used gene quantisation technique, Lateral Flow Device (LFD), is now commonly used to detect the presence of SARS-CoV-2. It is enabling the control and prevention of the spread of the virus. Depending on the viral load, LFD have different sensitivity and self-test for normal user present additional challenge to interpret the result. With the evolution of machine learning algorithms, image processing and analysis has seen unprecedented growth. In this interdisciplinary study, we employ novel image analysis methods of computer vision and machine learning field to study visual features of the control region of LFD. Here, we automatically derive results for any image containing LFD into positive, negative or inconclusive. This will reduce the burden of human involvement of health workers and perception bias.
翻译:广泛使用的基因定量技术,即横向流动装置(LFD),现在通常用于检测SARS-COV-2的存在。它有助于控制和预防病毒的传播。视病毒负荷而定,LFD具有不同的敏感性和对正常用户的自我测试对结果的解释提出了额外的挑战。随着机器学习算法的演进,图像处理和分析出现了前所未有的增长。在这项跨学科研究中,我们采用了计算机视觉和机器学习领域的新图像分析方法来研究LFD控制区的视觉特征。在这里,我们自动得出含有LFD的任何图像的结果为正数、负数或无结果。这将减少人类参与保健工作者和认知偏见的负担。