Models defined by moment conditions are at the center of structural econometric estimation, but economic theory is mostly agnostic about moment selection. While a large pool of valid moments can potentially improve estimation efficiency, in the meantime a few invalid ones may undermine consistency. This paper investigates the empirical likelihood estimation of these moment-defined models in high-dimensional settings. We propose a penalized empirical likelihood (PEL) estimation and establish its oracle property with consistent detection of invalid moments. The PEL estimator is asymptotically normally distributed, and a projected PEL procedure further eliminates its asymptotic bias and provides more accurate normal approximation to the finite sample behavior. Simulation exercises demonstrate excellent numerical performance of these methods in estimation and inference.
翻译:由瞬间条件定义的模型是结构计量经济学估计的中心,但经济理论大多对时间选择不可知。虽然大量有效时间可以提高估计效率,但与此同时,少数无效时间可能会破坏一致性。本文调查了这些瞬间定义模型在高维环境中的经验性可能性估计。我们提出了一个惩罚性的经验性可能性估计(PEL),并在对无效时间进行一致检测的情况下确定了其孔径属性。PEL估计符是正常的,预测的PEL程序将进一步消除其无现时偏差,为有限的抽样行为提供更准确的正常近似。模拟工作显示了这些方法在估计和推断方面的极好的数字性表现。