With the rapid development of high-throughput experimental technologies, different types of omics (e.g., genomics, epigenomics, transcriptomics, proteomics, and metabolomics) data can be produced from clinical samples. The correlations between different omics types attracts a lot of research interest, whereas the stduy on genome-wide omcis data translation (i.e, generation and prediction of one type of omics data from another type of omics data) is almost blank. Generative adversarial networks and the variants are one of the most state-of-the-art deep learning technologies, which have shown great success in image-to-image translation, text-to-image translation, etc. Here we proposed OmiTrans, a deep learning framework adopted the idea of generative adversarial networks to achieve omics-to-omics translation with promising results. OmiTrans was able to faithfully reconstruct gene expression profiles from DNA methylation data with high accuracy and great model generalisation, as demonstrated in the experiments.
翻译:随着高通量实验技术的迅速发展,不同种类的显微镜(例如基因组学、显微缩微缩微胶学、转基因组学、转基因组学、蛋白质组学和代谢学)数据可以通过临床样本产生。不同显微镜类型之间的相互关系引起了许多研究兴趣,而整个基因组的奥米西数据转换(即,从另一类显微镜数据中产生和预测一种类型的显微镜学数据)则几乎是空白的。生成式对称网络和变异体是最先进的深层次学习技术之一,在图象到图像翻译、文本到图像翻译等方面都取得了巨大成功。我们在这里提出了一个深层次的学习框架,采用了基因对抗网络的想法,以便实现具有良好结果的奥米到组学的翻译。正如实验所显示的那样,奥米里德能够忠实地从DNA甲基化数据中以高度精确和极强的模型概括性概括性地重建基因表达基因的剖面图。