Demographic parity is the most widely recognized measure of group fairness in machine learning, which ensures equal treatment of different demographic groups. Numerous works aim to achieve demographic parity by pursuing the commonly used metric $\Delta DP$. Unfortunately, in this paper, we reveal that the fairness metric $\Delta DP$ can not precisely measure the violation of demographic parity, because it inherently has the following drawbacks: \textit{i)} zero-value $\Delta DP$ does not guarantee zero violation of demographic parity, \textit{ii)} $\Delta DP$ values can vary with different classification thresholds. To this end, we propose two new fairness metrics, \textsf{A}rea \textsf{B}etween \textsf{P}robability density function \textsf{C}urves (\textsf{ABPC}) and \textsf{A}rea \textsf{B}etween \textsf{C}umulative density function \textsf{C}urves (\textsf{ABCC}), to precisely measure the violation of demographic parity in distribution level. The new fairness metrics directly measure the difference between the distributions of the prediction probability for different demographic groups. Thus our proposed new metrics enjoy: \textit{i)} zero-value \textsf{ABCC}/\textsf{ABPC} guarantees zero violation of demographic parity; \textit{ii)} \textsf{ABCC}/\textsf{ABPC} guarantees demographic parity while the classification threshold adjusted. We further re-evaluate the existing fair models with our proposed fairness metrics and observe different fairness behaviors of those models under the new metrics.
翻译:人口均等是机器学习中最普遍公认的群体公平度{Delta DP$,这确保了不同人口群体的平等待遇}。许多工作都旨在通过采用通用的 $\ Delta DP$来达到人口均等。 不幸的是,在本文件中,我们透露公平度$\ Delta DP$无法准确衡量对人口均等的违反情况,因为它本质上有以下缺点:\ textit{i} 0-value $\ Delta DP$不能保证没有违反人口均等,\ textit{B}$Delta DP$可以随着不同的分类阈值而变化。为此,我们提议了两种新的公平度,\ texts{B} 。我们提出了两个新的公平度指标,\ texts f{B} 显示了我们目前不同的人口平均率。