Demographic parity is the most widely recognized measure of group fairness in machine learning, which ensures equal treatment of different demographic groups. Numerous works aim to achieve demographic parity by pursuing the commonly used metric $\Delta DP$. Unfortunately, in this paper, we reveal that the fairness metric $\Delta DP$ can not precisely measure the violation of demographic parity, because it inherently has the following drawbacks: \textit{i)} zero-value $\Delta DP$ does not guarantee zero violation of demographic parity, \textit{ii)} $\Delta DP$ values can vary with different classification thresholds. To this end, we propose two new fairness metrics, \textsf{A}rea \textsf{B}etween \textsf{P}robability density function \textsf{C}urves (\textsf{ABPC}) and \textsf{A}rea \textsf{B}etween \textsf{C}umulative density function \textsf{C}urves (\textsf{ABCC}), to precisely measure the violation of demographic parity in distribution level. The new fairness metrics directly measure the difference between the distributions of the prediction probability for different demographic groups. Thus our proposed new metrics enjoy: \textit{i)} zero-value \textsf{ABCC}/\textsf{ABPC} guarantees zero violation of demographic parity; \textit{ii)} \textsf{ABCC}/\textsf{ABPC} guarantees demographic parity while the classification threshold adjusted. We further re-evaluate the existing fair models with our proposed fairness metrics and observe different fairness behaviors of those models under the new metrics.


翻译:人口均等是机器学习中最普遍公认的群体公平度{Delta DP$,这确保了不同人口群体的平等待遇}。许多工作都旨在通过采用通用的 $\ Delta DP$来达到人口均等。 不幸的是,在本文件中,我们透露公平度$\ Delta DP$无法准确衡量对人口均等的违反情况,因为它本质上有以下缺点:\ textit{i} 0-value $\ Delta DP$不能保证没有违反人口均等,\ textit{B}$Delta DP$可以随着不同的分类阈值而变化。为此,我们提议了两种新的公平度,\ texts{B} 。我们提出了两个新的公平度指标,\ texts f{B} 显示了我们目前不同的人口平均率。

0
下载
关闭预览

相关内容

【ICDM 2022教程】图挖掘中的公平性:度量、算法和应用
专知会员服务
28+阅读 · 2022年12月26日
因果图,Causal Graphs,52页ppt
专知会员服务
249+阅读 · 2020年4月19日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年3月21日
Arxiv
0+阅读 · 2023年3月17日
Arxiv
14+阅读 · 2021年8月5日
Arxiv
17+阅读 · 2019年3月28日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员