Deep neural networks are highly susceptible to adversarial attacks, which pose significant risks to security- and safety-critical applications. We present KoALA (KL-L0 Adversarial detection via Label Agreement), a novel, semantics-free adversarial detector that requires no architectural changes or adversarial retraining. KoALA operates on a simple principle: it detects an adversarial attack when class predictions from two complementary similarity metrics disagree. These metrics-KL divergence and an L0-based similarity-are specifically chosen to detect different types of perturbations. The KL divergence metric is sensitive to dense, low-amplitude shifts, while the L0-based similarity is designed for sparse, high-impact changes. We provide a formal proof of correctness for our approach. The only training required is a simple fine-tuning step on a pre-trained image encoder using clean images to ensure the embeddings align well with both metrics. This makes KOALA a lightweight, plug-and-play solution for existing models and various data modalities. Our extensive experiments on ResNet/CIFAR-10 and CLIP/Tiny-ImageNet confirm our theoretical claims. When the theorem's conditions are met, KoALA consistently and effectively detects adversarial examples. On the full test sets, KoALA achieves a precision of 0.94 and a recall of 0.81 on ResNet/CIFAR-10, and a precision of 0.66 and a recall of 0.85 on CLIP/Tiny-ImageNet.
翻译:暂无翻译