In this note we give a polynomial time algorithm for solving the closest vector problem in the class of zonotopal lattices. Zonotopal lattices are characterized by the fact that their Voronoi cell is a zonotope, i.e. a projection of a regular cube. Examples of zonotopal lattices include lattices of Voronoi's first kind and tensor products of root lattices of type A. The combinatorial structure of zonotopal lattices can be described by regular matroids/totally unimodular matrices. We observe that a linear algebra version of the minimum mean cycling canceling method can be applied for efficiently solving the closest vector problem in zonotopal lattices.
翻译:在本说明中,我们给出了一种多元时间算法,以解决Zonotopatal latices 类中最接近的矢量问题。Zonotopatal latices的特征是,他们的Voronoi细胞是zonoope, 即一个普通立方体的投影。Zonotoponoi latices的例子包括Voronoi 的首种 ⁇ 和A类根 ⁇ 的数个产物。Zonotoponal latics的组合结构可以用普通的造型/完全的单质基质基体来描述。我们观察到,最低限度平均自行车取消法的线性代数可被用于有效解决Zonotopatal latices 中最接近的矢量问题。