$k$-truss model is a typical cohesive subgraph model and has been received considerable attention recently. However, the $k$-truss model only considers the direct common neighbors of an edge, which restricts its ability to reveal fine-grained structure information of the graph. Motivated by this, in this paper, we propose a new model named $(k, \tau)$-truss that considers the higher-order neighborhood ($\tau$ hop) information of an edge. Based on the $(k, \tau)$-truss model, we study the higher-order truss decomposition problem which computes the $(k, \tau)$-trusses for all possible $k$ values regarding a given $\tau$. Higher-order truss decomposition can be used in the applications such as community detection and search, hierarchical structure analysis, and graph visualization. To address this problem, we first propose a bottom-up decomposition paradigm in the increasing order of $k$ values to compute the corresponding $(k, \tau)$-truss. Based on the bottom-up decomposition paradigm, we further devise three optimization strategies to reduce the unnecessary computation. We evaluate our proposed algorithms on real datasets and synthetic datasets, the experimental results demonstrate the efficiency, effectiveness and scalability of our proposed algorithms.


翻译:$k$- trus 模型是一种典型的具有凝聚力的子图模型,最近受到相当重视。然而,$k$- trus 模型只考虑边缘的直接共同邻里,这限制了它披露图表细微结构信息的能力。在本文的推动下,我们提出了一个名为$(k,\tau)$- trus 的新模型,该模型将考虑上层周边($tau$)的边缘信息。根据$(k,\tau)$- trus 模型,我们研究高端 Trus 拆解问题,它计算出美元(k,\tau) 的细微结构信息。在这个文件中,我们提议了一个名为$(k,\tau) $(tau) 的新的模型,用于考虑社区探测和搜索、等级结构分析以及图形可视化信息。为了解决这个问题,我们首先提议在美元值递增的 $k$(k,\tau) 值的合成系统拆解配置模型, 和我们提议的模型的不必要数据计算结果。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
【2021新书】高阶网络,150页pdf,Higher-Order Networks
专知会员服务
88+阅读 · 2021年11月26日
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
50+阅读 · 2021年1月20日
迁移学习简明教程,11页ppt
专知会员服务
108+阅读 · 2020年8月4日
商业数据分析,39页ppt
专知会员服务
161+阅读 · 2020年6月2日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月19日
VIP会员
相关VIP内容
【2021新书】高阶网络,150页pdf,Higher-Order Networks
专知会员服务
88+阅读 · 2021年11月26日
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
50+阅读 · 2021年1月20日
迁移学习简明教程,11页ppt
专知会员服务
108+阅读 · 2020年8月4日
商业数据分析,39页ppt
专知会员服务
161+阅读 · 2020年6月2日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
相关资讯
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员